# DowElanco (N Z) Ltd. CONFIDENTIAL

## APPENDIX C GROUND PENETRATING RADAR REPORT



## GROUNDSEARCH EES Ltd.

Ground Penetrating Radar (GPR) and Resistivity Survey, DowElanco (NZ) Ltd

for Groundwater Technology (NZ) Ltd 2 November, 1995

GROUNDSEARCH EES Ltd 3067 Great North Rd New Lynn Auckland

Ph 64-9-826-0700

Fax 64-9-826-0900

soil is the foundation of life



22/11/95

Groundwater Technology (NZ) Ltd 8 Leek St Newmarket

ATTN. David Whyte

Dear David,

Groundsearch are pleased to present the final results of the Ground Penetrating Radar and Resistivity survey carried out during October at DowElanco, New Plymouth.

We were very satisfied with the GPR performance during the survey and in geophysical terms, some of the reflections obtained are of 'text book' quality. As discussed, the site plan accompanying this report has boreholes plotted in approximate locations only.

Please don't hesitate to contact us regarding any questions you may have after reading the report. Thank you for the opportunity to carry out this survey.

Yours faithfully GROUNDSEARCH EES Ltd.

Matt Watson

M. Watro

Geophysicist.

SOIL IS THE FOUNDATION OF LIFE







HYDROGEOLOGY

CONTAMINANT HYDROLOGY & SOIL SCIENCE

GEOPHYSICS

| AV652599 |                                              |   |  |
|----------|----------------------------------------------|---|--|
| 1.0      | Objectives                                   | 2 |  |
| 2.0      | Methodology                                  | 2 |  |
| 3.0      | Theory of GPR method and Resistivity methods | 3 |  |
| 4.0      | Results                                      | 4 |  |
| 5.0      | Conclusions                                  | 6 |  |
|          | Figures 1 - 9                                |   |  |
|          | Appendix (GPR Data)                          |   |  |

Groundsearch was requested to carry out a Ground Penetrating Radar (GPR) survey at the DowElanco site, New Plymouth. The objective of the survey was to determine the geological structure beneath the site, in particular the lateral and vertical extent of an area of topographically higher andesite buried beneath airfall tephras. This will provide control for groundwater modelling.

While GPR was the principle survey method, it was also proposed that some Electrical Resistivity measurements are carried out. These enhance the resistivity data collected at this site in 1994 and improve the accuracy of the radar interpretation.

Survey Location

The survey was within the grounds of DowElanco (NZ) Ltd, New Plymouth (figure 1). The site consists of open grassland and asphalt hardstand, with a number of flat areas separated by three metre high, forty degree slopes.

#### 2.1 Data Collection

GSEES used a SIR-2 radar system from Geophysical Survey Systems Inc. The data is displayed in real-time on a colour monitor and is stored on internal hard drive. The Sir-2 system is compatible with a wide range of antenna frequencies, from 20 MHz to 2.5 GHz. Operation takes place from the back of a vehicle using a 12V power supply.

This survey was conducted using two 35 MHz antennae (one receiver and one transmitter). These antennae provide better depth penetration than those of the higher frequency.

Over 100 individual radar profiles were carried out using the SIR-2. Some of the data was collected in point mode and some in continuous mode. Point mode involves taking measurements (scans) using stationary antennas at 0.5m intervals. This ensures maximum depth penetration and clarity of signal return.

Continuous measurements involve moving the antennae slowly across the ground, taking scans at a rate of 8,16 or 32 scans/second. The data is generally poorer quality than using point mode due to the up/down movement of the antennae. A continuous profile takes considerably less time to run than a point mode profile.

#### 2.3 Data Processing

After data collection, the data is filtered to extract unwanted information (called 'noise'. Noise can be generated by the radar system itself, other nearby electrical equipment or by the vehicle in which the radar is mounted.

Vertical high/low pass filters, Horizontal high/low pass filters and background removal filters were used to eliminate as much of the noise as possible. All radar data must be corrected for change in surface topography. This involves adjusting each scan line to a specified elevation datum, which was taken as mean sea level for this survey.

#### 2.4 Theory

The *Ground Penetrating Radar* (GPR) method involves transmitting and receiving electromagnetic (EM) energy. An EM pulse is sent into the ground, which travels at a speed dependent on the electrical properties of the material through which it passes. At boundaries between different materials some of the EM energy is reflected back to the surface, whereupon its arrival time is measured and the distance to the reflective boundary can therefore be inferred.

Radar waves are partially reflected (and partially transmitted) at interfaces where there is a contrast in dielectric properties. The amount of energy reflected (ie. the strength or amplitude of the return signal) is dependent on the magnitude of the contrast.

In order to calculate the depth to the reflectors, or objects of interest seen on the radar section, the velocity of the radar wave through that particular medium must be known. This is dependent on the dielectric permittivity of the ground material it passes through, linked by the equation:

 $V = C / K^{1/2}$  (where C=velocity of light in a vacuum = 0.3 m/nS)

For this survey, the average value of K was assumed to be 9.5. This is based on our understanding of the geology at this particular location. We believe that an error of approximately 20% in the assumed K value is likely, based on our experience to date with GPR. This is due to variability mainly in saturation and clay content. This has an effect on the accuracy of the depth determination.

## Definitions of some technical terms that are used in this report:

GROUNDSEARCH Geophysical Survey DowElanco (NZ) Ltd

DowElanco (N Z) Ltd.

CONFIDENTIAL

Dielectric constant (K)

A value describing the ability of a particular material to retain electrical charge. It determines the velocity of radar waves through the ground.

Diffraction

This is a hemispherical, concave downward, feature seen on the radar sections. It is caused by the scattering of radar waves when they hit an object of different electrical properties to the surrounding material. Likely causes of diffractions are pipes, underground phone/power lines, buried metal objects, angular or isolated rocks.

Two-way travel time

The time taken for a radar wave (electromagnetic impulse) to reach a particular subsurface boundary and return to the surface.

nS

nano-second. 1 x 10-9 seconds

radar section

The printed results of a radar survey, consisting of thousands of individual pulses (sounding events). This is usually displayed with horizontal distance as the x-axis and depth or two-way travel time as the y-axis.

reflector

A reflector is a point, or surface beneath the ground that is capable of returning (bouncing) radar waves back to the surface. It appears on a wiggle trace as a darker, larger than normal bump on the trace, which is seen on the radar section as a dark line.

DC Resistivity was used as a secondary exploration method for this survey, and was the principle exploration method used for the 1994 survey. The technique uses passage of electric current together with simultaneous voltage readings to define distribution of resistivity versus depth. GSEES used the Schlumberger Array to determine the lateral and vertical variation in resistivity. The resistivity reflects electrical properties of the ground. Material saturated with water has a much lower resistivity than the dry equivalent.

The theory used to model the data assumes the ground surface is flat and the ground consists of discrete, flat layers of constant resistivity. Local variations, especially steep slopes, cause distortions of the measurements. Pipes and cables also cause variations. The interpretation has taken these into account where possible.

For Andesite, typical resistivities are between about 80 and 500 ohm metres.

Resistivity of sediments is related to:

a) porosity: greater porosity = resistivity lower

b) groundwater salinity: higher salinity = lower resistivity

c) clay/silt content: high clay/silt = lower resistivity

clays 1-50
sands 30-200
gravels 80-2500
basalts (older) 100-500 (French, AC 1980)

basalts (young) 500-2000 waitemata series 20-30

recent gravels 50-150 (lower permeability) G.Roberts 1984/85 recent gravels 200-2000 (higher perm.) G.Roberts 1984/85

The Schlumberger Array was used to measure the electrical resistivity of the subsurface. The array is fully described in geophysical texts (eg Introduction to Geophysical Prospecting, M.B. Dobrin, McGraw Hill Publishers). This array applies current through two widely spaced electrodes. The induced electrical field produces a voltage drop across the array, which is measured between two central potential electrodes. The voltage drop is measured for a number of current-electrode spacings. This is called a "spread". Current electrode spacings of up to 400m each way were used.

Apparent resistivity was calculated from the applied current, measured voltage and array configuration. It was plotted in the field. Unusual results were repeated to eliminate spurious data points. Additional current electrode spacings were used to confirm unexpected data trends.

The field stations were organised into traverse lines, varying number of spreads. The Lines were generally started in the centre of the survey area. Field stations were then surveyed in both directions, keeping spreads in line with the current electrodes (collinear). The line was extended until field interpretation of the apparent resistivity plots showed no andesite.

The first field station was a full sounding. The other stations have a reduced number of current electrode spacings. The reduced number gives good sounding data with fast ground coverage.

Apparent resistivity was calculated using the following formula:

$$\rho_a = \pi \times \frac{\left(\frac{A B}{2}\right)^2}{m n} \times \frac{V}{I}$$

GROUNDSEARCH Geophysical Survey DowElanco (NZ) Ltd

DowElanco (N Z) Ltd.
CONFIDENTIAL

where

AB = current electrode spacing mn = potential electrode spacing

V = voltage drop across the potential electrodes I = current applied to the current electrodes

The resistivity field results are given in Appendix A.

The greater the distance apart of the current injection spikes, the deeper the penetration of the current. The measured resistivity for greater electrode separation therefore reflects conditions at greater depth. Modelling of the data gives the ground electrical structure. This structure is then interpreted to give the geological structure.

Buried electrical conductors, like cables or pipes, can affect the applied electrical field. The effect can either increase or decrease the apparent resistivity.

The self potential of the ground is generally accounted for during measurement of the resistivity. Rain showers often cause rapid variation in the self potential. Such variation is very difficult to filter from the applied signal.

Leakage from the overhead power lines along the western fence line during and after rain showers caused very unstable self potential fields. Resistivity could not be carried out in these locations until the grass had sufficiently dried.

The measurements of the field stations were graphed against current electrode separation. There is an empirical relationship between electrode separation and depth. Graphing of field stations against pseudo-depth is called a resistivity pseudo-section.

Computer modelling was performed for the all resistivity data. This provided information on the thickness and resistivity of subsurface layers. It is impossible to uniquely determine both the thickness and resistivity (without some independent control). This is due to the "equivalence" theory, as explained below.

If the modelling gives a ten metre thick layer of 300  $\Omega$ m, it could really be:

| 5 meters thick  | 600 Ωm |
|-----------------|--------|
| 10 metres thick | 300 Ωm |
| 20 metres thick | 150 Ωm |
| 60 metres thick | 50 Ωm  |

Wider current electrode spacings give deeper current paths. Modelling of the data for a field station therefore gives a one dimensional Vertical Electrical Sounding.

The model indicates the andesite has a resistivity of  $300\Omega m$  to  $400\Omega m$  and is some 12 to 15 m thick. Noise at greater current electrode spacings prescribed detailed modelling below the andesite.

GROUNDSEARCH Geophysical Survey DowElanco (NZ) Ltd

DowElanco (N Z) Ltd.

CONFIDENTIAL

The resistivity data was modelled to give layers of reasonably consistent resistivity. These were then interpreted to a geologic structure. The layer model is a requirement of the electrical theory used.

Surface topography affects the apparent resistivity. Where possible topography is taken into account. It is a primary cause of erroneous data.

All GPR and resistivity data is provided in Appendix A.

The processing and interpretation of the data for this survey involved the following stages:

- 1) Plotting all data points and profile lines on 1:1000 scale map.
- 2) Applying vertical / horizontal filters and background removal filters to GPR data to increase signal/noise ratio.
- 3) Applying topographic corrections to GPR data to allow for surface topography
- 4) Correcting for variability in horizontal distances of GPR profiles
- 5) Computer modelling of resistivity data
- 6) Plotting resistivity pseudo sections
- 7) Constructing geological cross-sections based on processed GPR and resistivity data
- Constructing three-dimensional map of geological structure based on crosssections.
- 9) Making final geological interpretation

#### Summary of geological cross sections

Geological cross-sections were drawn to a scale of 1:10000, with 2.5x vertical exaggeration. A map of the site showing location of sections is given as figure 1.

### Section #1 (figure 2)

This section runs parallel to the western fence line from South to North. Two andesite highs can be seen. Strong diffractions seen on the GPR data in this vicinity support the presence of these steep sided structures. Diffractions are caused when radar waves are scattered from sharp objects.

# DowElanco (NZ) Ltd. CONFIDENTIAL

The depths of andesite from the GPR interpretation, resistivity interpretation and bore hole drilling logs all correlate at BH10A. This gives confidence in the geological interpretation.

#### Section #2 (figure 3)

This section runs SW to NE along the northern fence line. The andesite is interpreted from the GPR data to lie at a depth of about 54m a.s.l. The resistivity data suggests a depth of about 58m a.s.l.

The discrepancy is most likely to be caused by the equivalence error in the resistivity model, as explained in section 4. The GPR data is the more reliable of the two depths.

#### Section #3 (figure 4)

Running parallel to section 1, but further east. This section shows similar features to section 1, with a strong reflector, interpreted as andesite, rising to 5 m below the surface. This reflector has the characteristic andesite return signal, in terms of amplitude. It is possible that this is a reflection from a tephra layer overlying an andesite high.

#### Section #4 (figure 5)

This intersects sections 1 and 5, running from western fence line to just beyond BH5.

Andesite is interpreted as rising to 52m a.s.l., 10m past the intersection with section #5. This puts the andesite high 15m (horizontal distance) away from the high on section #5.

#### Section #5 (figure 6)

This section was drawn using two GPR lines along Centennial Drive, outside the Dow Elanco site. Topography was not covered by the 1:1000 site base map, and was therefore estimated in the field. The andesite is at a maximum of 57m a.sl, descending to 52m to the west and 45m + steeply to the east.

#### Section #6 (figure 7)

Two short sections around BH10B. These show a depth to Andesite of between 55m and 60m.

#### Section #7 (figure 8)

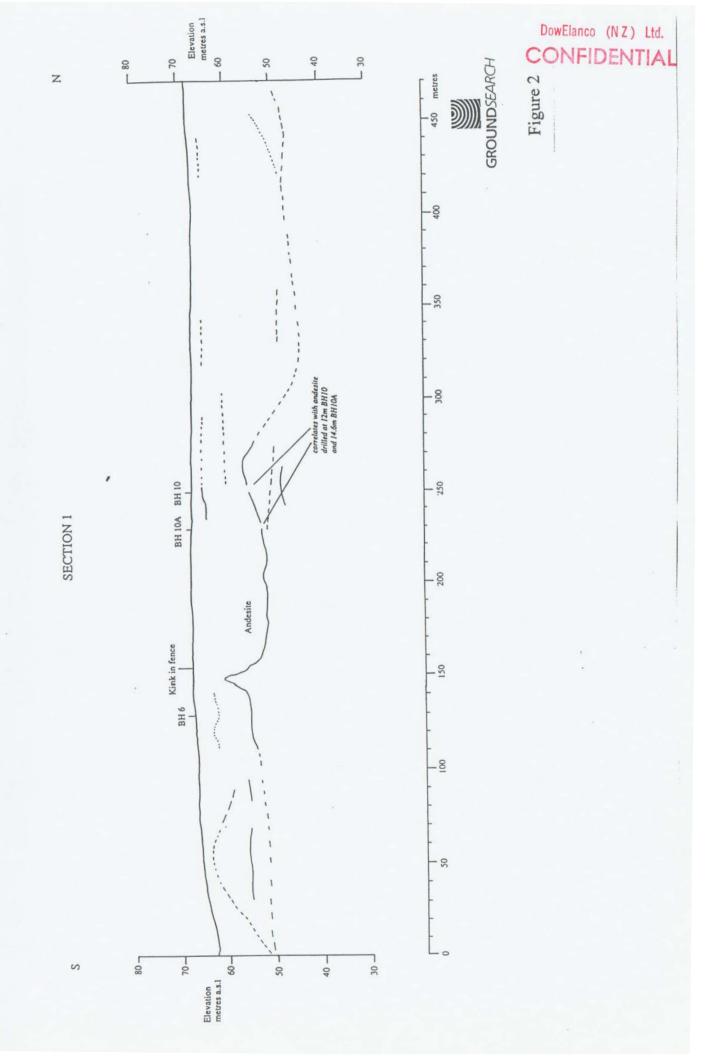
This section runs south towards building 30 (incinerator building) and a steep north dipping gradient can be seen down to an elevation of 58m asl. No deeper reflectors or structures were visible.

#### Extent of Andesite layer

Based on the GPR data, the andesite is present under all of the survey area covered. The upper surface of this layer varies from gently undulating to very steep gradients. Isolated high points were found with elevations up to and above 60m a.s.l.

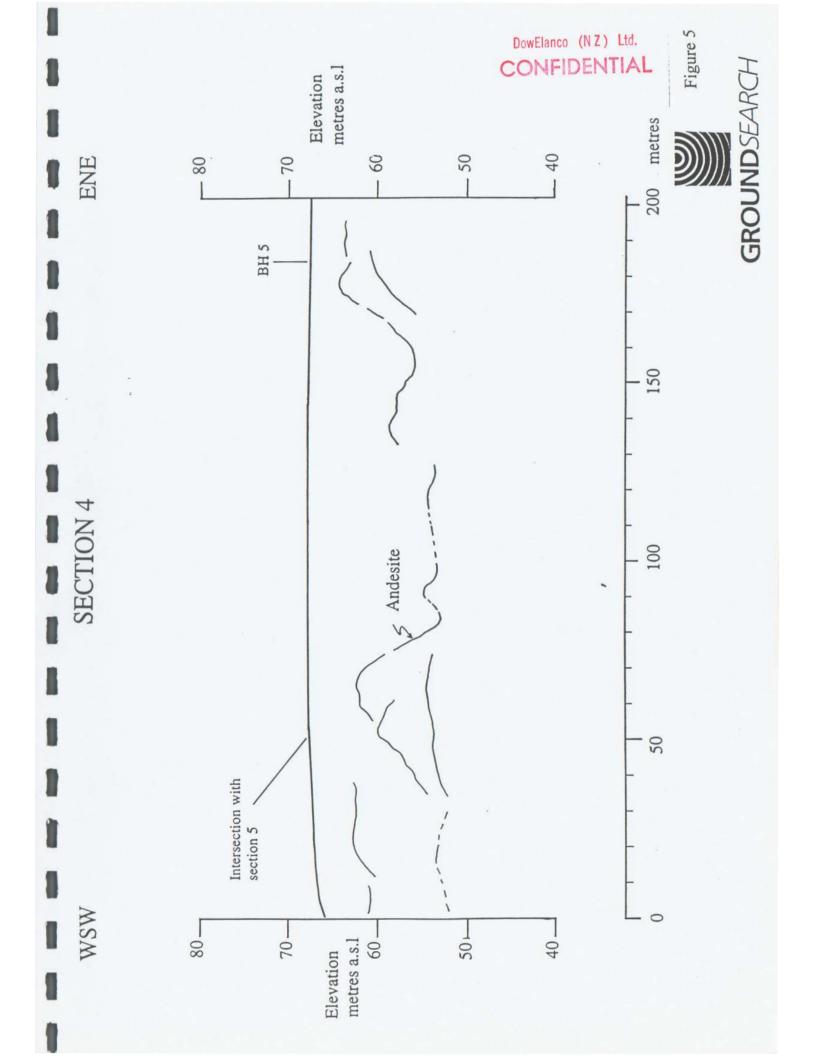
Figure 9 shows a contour map of the area. This map was constructed using an interpretation of all geophysical measurements carried out at the DowElanco site during 1994 and 1995. The high points can be seen as the 'conical' features in the southern end of the site. The low points in the Andesite surface can be seen in the north-west corner of the site.

Lithologic boundaries in the material overlying the andesite generally gave weaker return signals. It is therefore difficult to identify individual layers or structure within this depth range from the GPR or resistivity data.

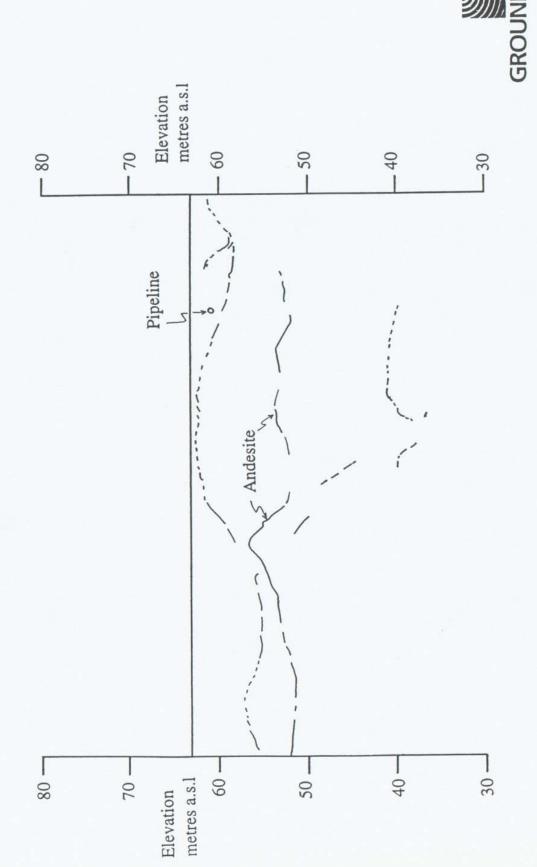

Yours faithfully **GROUND**SEARCH Ltd

Matt Watson Geophysicist

10:34AM GROUNDWATER TECH NZ


96,

80 NAT



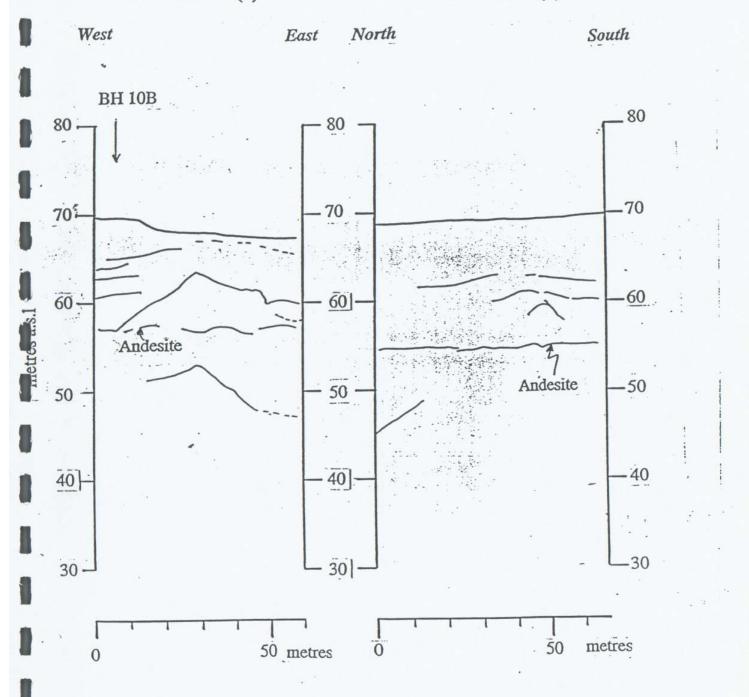

k

SECTION 3

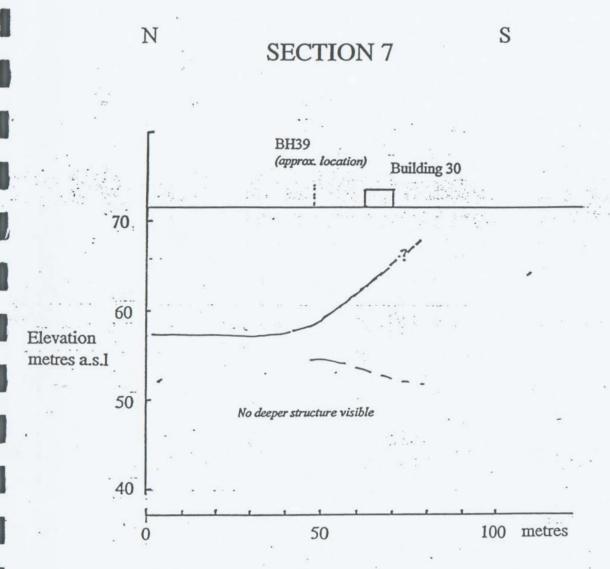







口

SECTION 5


×

## SECTION 6 (a)

## SECTION 6 (b)



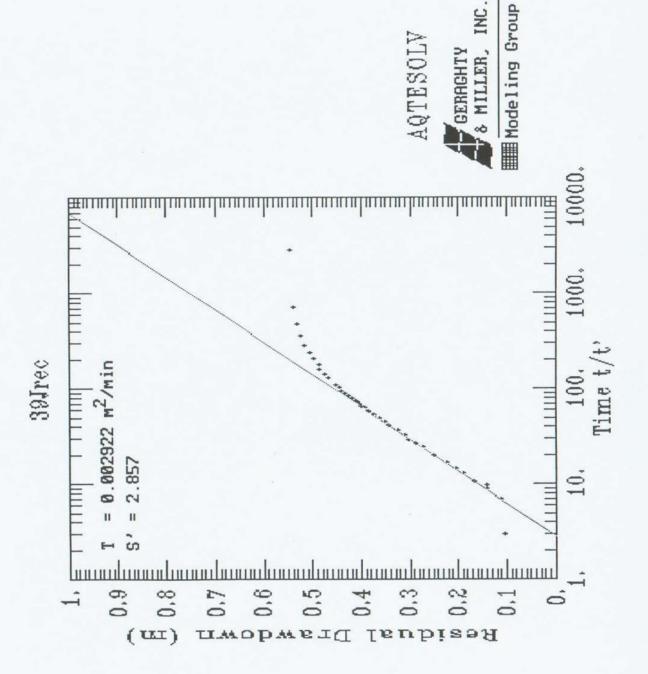


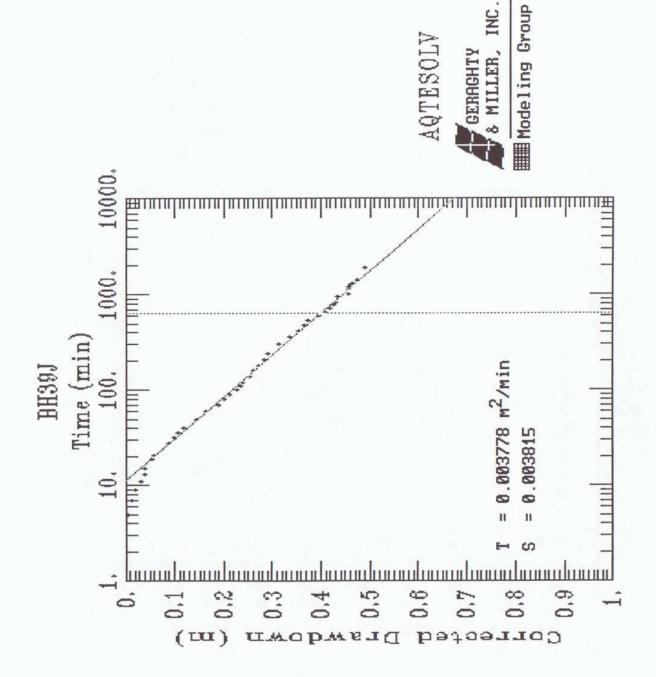


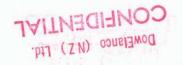


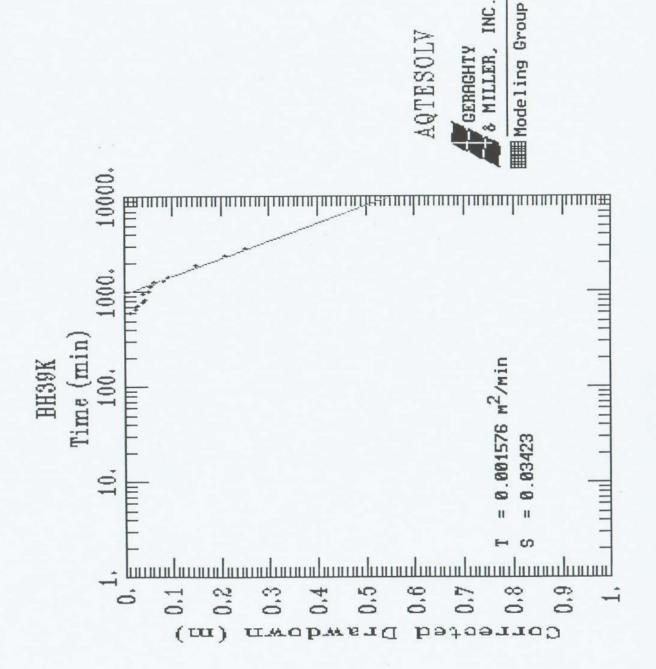
2

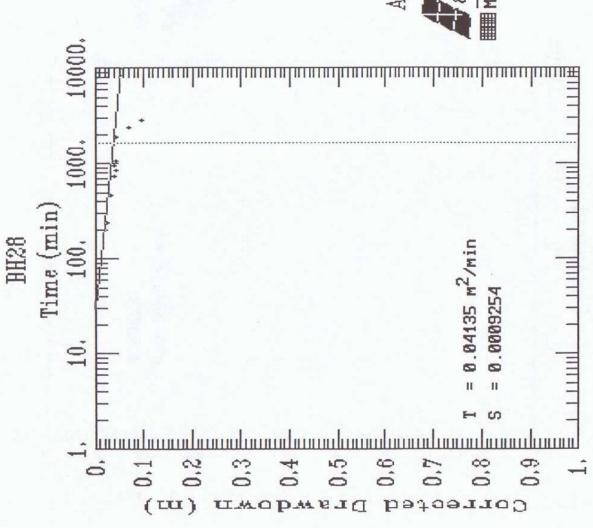
DowElanco, New Plymouth


Contour Map of Andesite

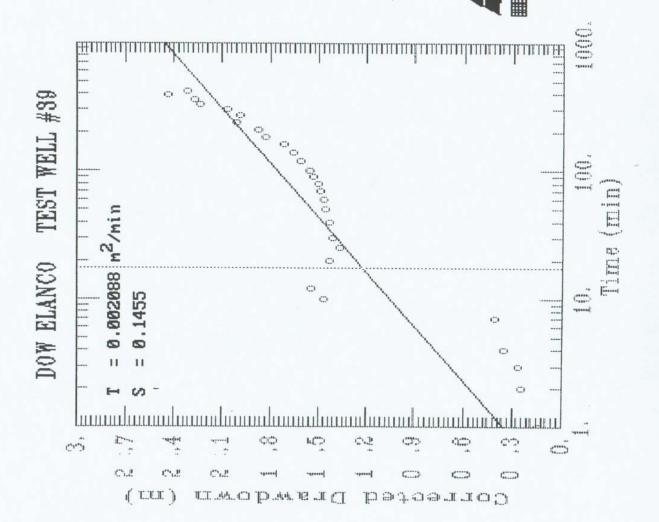

Figure 9

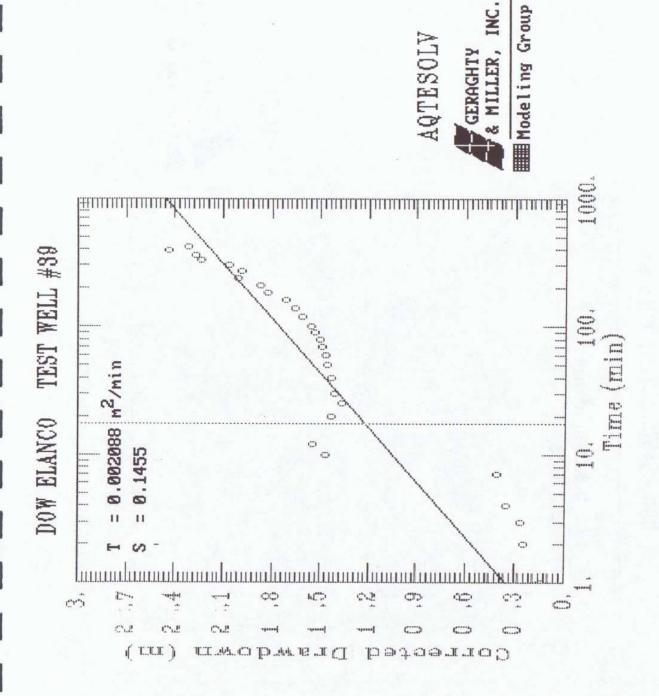

# DowElanco (NZ) Ltd. CONFIDENTIAL

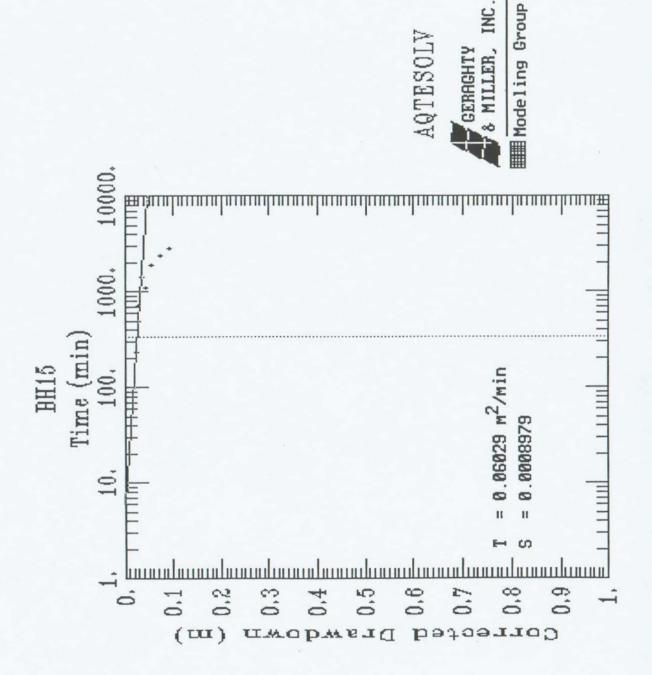

APPENDIX D
PUMP TEST DATA





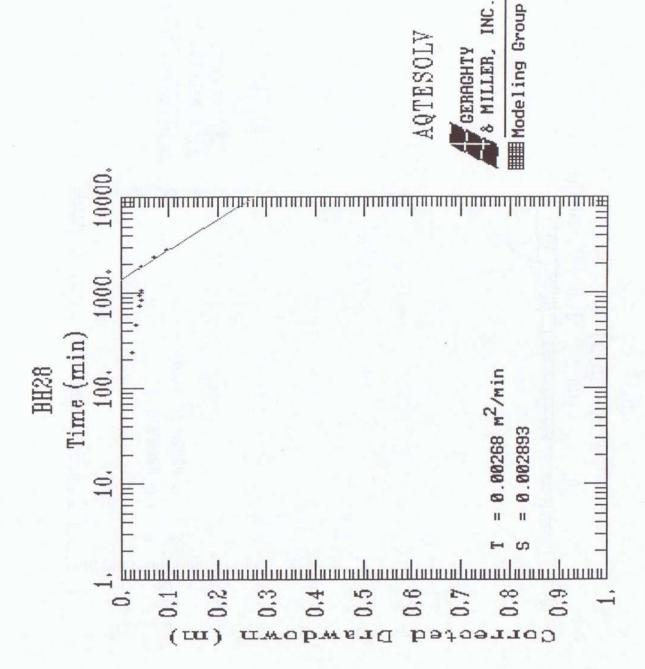



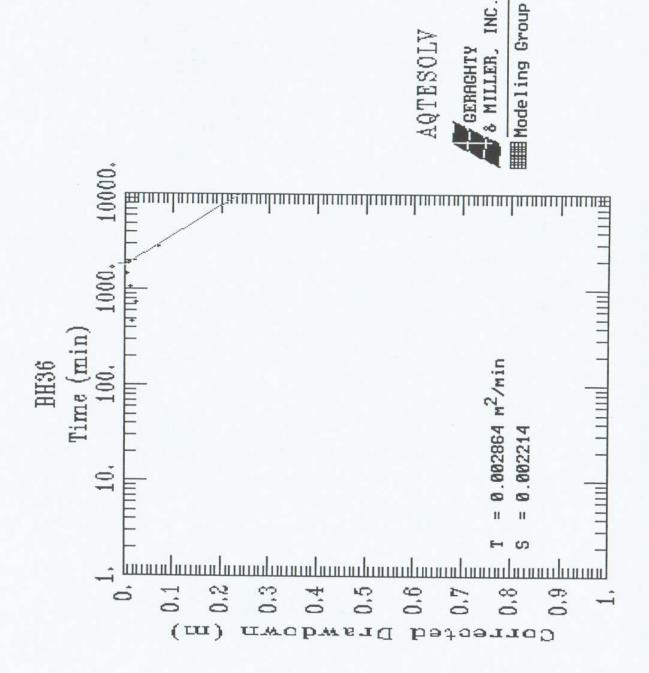



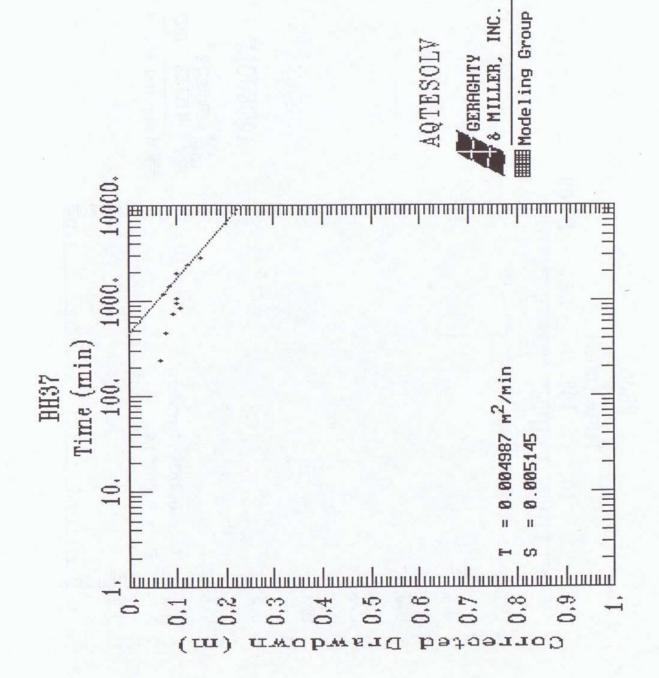


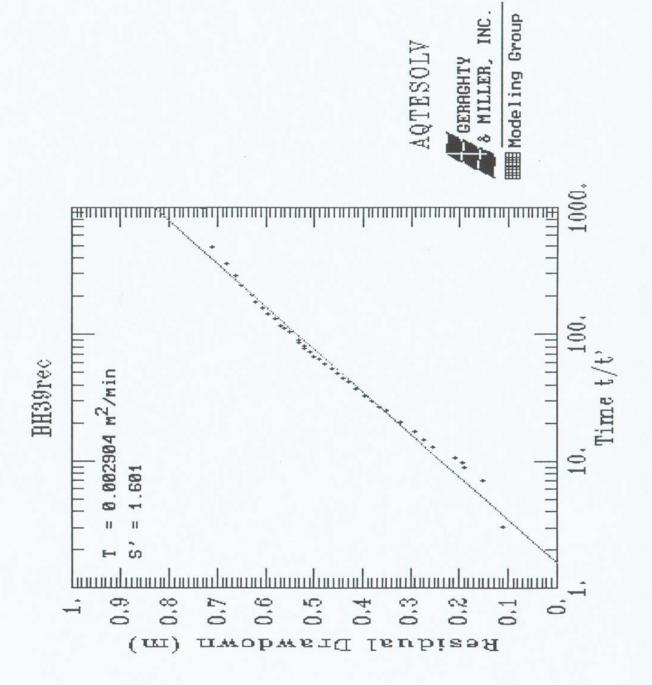

AQTESOLV GERRGHTY & MILLER, INC.







CONFIDENTIAL CONFIDENTIAL














# DowElanco (NZ) Ltd. CONFIDENTIAL

APPENDIX E

LABORATORY REPORTS



## Soil and Water Sample Analysis Results

Samples of soil and water were collected during the drilling of bores and following the installation of piezometers.

#### 1. SOIL SAMPLES

| Bore Number | Depth (metres) | Sample<br>Reference | Phenoxies<br>mg/kg | Chlorophenols<br>mg/kg |
|-------------|----------------|---------------------|--------------------|------------------------|
| 33          | 1.0            | 940823-3            | < 1                | <1                     |
|             | 18.7           | 940823-1            | < 1                | < 1                    |
|             | 20.2           | 940823-2            | < 1                | < 1                    |
| 34          | 0.5            | 940823-4            | < 1                | < 1                    |
|             | 23.4           | 940823-7            | < 1                | < 1                    |
|             | 25.6           | 940823-10           | < 1                | < 1                    |
| 35          | 0.5            | 940823-16           | < 1                | < 1                    |
|             | 9.61           | 940823-13           | < 1                | < 1                    |
|             | 23.4           | 940823-19           | < 1                | < 1                    |
| 36          | 0.5            | 940823-5            | <1                 | < 1                    |
|             | 14.4           | 940823-8            | < 1                | < 1                    |
|             | 23.4           | 940823-11           | < 1                | < 1                    |
| 37          | 20.3           | 940823-22           | < 1                | < 1                    |
|             | 23.8           | 940823-25           | < 1                | < 1                    |
|             | 24.6           | 940823-28           | < 1                | < 1                    |
| 38          | 6.55           | 940823-29           | < 1                | < 1                    |
|             | 12.67          | 940823-27           | < 1                | < 1                    |
|             | 18.0           | 940823-30           | < 1                | < 1                    |

RESGW.DOC 1 of 4

## Soil Samples (continued)

| Bore Number | Depth (metres) | Sample<br>Reference | Phenoxies mg/kg | Chlorophenols<br>mg/kg |
|-------------|----------------|---------------------|-----------------|------------------------|
| 39          | 1.91           | 940823-14           | <1              | 18.3                   |
|             | 6.5            | 940823-15           | 2.5             | 6.8                    |
| Mark Market | 9.56           | 940823-17           | 6.5             | 5.9                    |
|             | 12.62          | 940823-18           | 4.6             | 3.1                    |
| Andrew Land | 15.68          | 940823-20           | 4.0             | 3.3                    |
|             | 17.21          | 940823-21           | 6.6             | 1.0                    |
|             | 20.2           | 940823-23           | 3.7             | <1                     |
|             | 22.0           | 940823-24           | 2.5             | < 1                    |
|             | 24.8           | 940823-26           | 5.6             | < 1                    |
| 40          | 0.85           | 940823-32           | <1              | < 1                    |
|             | 2.0            | 940823-9            | <1              | < 1                    |
|             | 20.3           | 940823-12           | <1              | < 1                    |
|             | 21.8           | 940823-31           | <1              | < 1                    |
| 16 A        | 21.95          | 940823-33           | <1              | <1                     |
|             | 25.01          | 940823-35           | 2.0             | < 1                    |
|             | 27.0           | 940823-36           | <1              | <1                     |
|             | 29.0           | 940823-37           | < 1             | <1                     |

RESGW.DOC 2 of 4

# 2. WATER SAMPLES

| Bore Number | Sample Reference | Phenoxies | Chlorophenols | Organophosphates | Solvents |
|-------------|------------------|-----------|---------------|------------------|----------|
|             |                  | mg/L      | mg/L          | mg/L             | mg/L     |
| 15          | 941005-15        | < 0.1     | < 0.1         |                  |          |
| 28          | 940823-16        | 0.1       | < 0.1         | < 0.005          | < 10     |
| 33          | 940823-10        | < 0.1     | < 0.1         | < 0.005          | < 10     |
| 36          | 940823-13        | 0.15      | 0.14          | < 0.005          | < 10     |
| 37          | 940823-19        | 0.19      | < 0.1         | < 0.005          | < 10     |
| 39          | 940823-2         | 2.3       | 1.6           | < 0.005          | < 10     |
| 39 (repeat) | 941005-01        | 1.9       | 1.1           | < 0.005          | < 10     |
| 40          | 940823-5         | <0.1      | < 0.1         | < 0.005          | < 10     |

Bore Number 39 - Analysis of groundwater samples collected during the pump tests.

|                                         |                    | -                  |                    |                    | _                  |                    |                    | _                  |                    |                    | -                  | _                  | _                  |
|-----------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Chlorophenols<br>mg/L                   | 1.12               | 1.18               | 1.14               | 1.07               | 1.14               | 0.94               | 1.07               | 1.12               | 0.98               | 1.10               | 0.95               | 1.09               | 0.98               |
| Phenoxies<br>mg/L                       | 2.16               | 2.27               | 2.13               | 2.04               | 1.82               | 1.98               | 1.90               | 1.82               | 1.78               | 1.96               | 1.94               | 1.93               | 1.80               |
| pH<br>(at 20°C)                         | 7.13               | 7.21               | 7.15               | 7.16               | 7.13               | 7.07               | not determined     | 7.06               | 7.14               | 7.16               | 7.10               | 7.05               | 7.09               |
| Volume Pumped<br>(cumulative)<br>Litres | 0                  | 85                 | 255                | 568                | 726                | 911                | 1001               | 1811               | 2319               | 2713               | 2895               | 3041               | 3170               |
| Date / Time                             | 19.10.94 / 1130hrs | 19.10.94 / 1140hrs | 19.10.94 / 1200hrs | 19.10.94 / 1540hrs | 19.10.94 / 1630hrs | 20.10.94 / 0926hrs | 20.10.94 / 1000hrs | 20.10.94 / 1200hrs | 20.10.94 / 1320hrs | 20.10.94 / 1430hrs | 20.10.94 / 1500hrs | 20.10.94 / 1530hrs | 20.10.94 / 1600hrs |
| Sample Number                           | 1                  | 2                  | 3                  | 4                  | 5                  | 9                  | 7                  | 8                  | 6                  | 10                 | 11                 | 12                 | 13                 |



#### AUSTRALIAN ANALYTICAL LABORATORIES PTY LTD

A.C.N. 001 491 667

Correspondence to: P.O. Box 514 HORNSBY NSW 2077 5 Kelray Place ASQUITH NSW 2077 Telephone: (02) 482 1922 Facsimile: (02) 482 1734

### **CERTIFICATE OF ANALYSIS**

DowElanco (N Z) Ltd.

CONFIDENTIAL

DATE:

30/10/95

REPORT No: 5S02034A

Page: 1 of 3

QA/QC Appendix

CLIENT:

Groundwater Technology - New Zealand

SAMPLES:

1 x Soil

REFERENCE:

N/A

LAB Nos.:

10501

DATE RECEIVED:

18/10/95

DATE COMMENCED:

18/10/95

TEST:

Phenols

METHOD:

1.

E1032/E162

2.

Phenoxy Acid Herbicides

E132

3.

4.

RESULTS:

All samples analysed as received.

This report replaces preliminary results issued.

PLEASE SEE ATTACHED PAGES FOR RESULTS

R.G. MOONEY B.Sc.(Hons), Dip.F.D.A., M.R.A.C.I.

**Authorising Chemist** 



# DowElanco (NZ) Ltd.

Australian Analytical Laboratories

CLIENT: GROUNDWATER TECHNOLOGY

REPORT No: 5S02034

SAMPLES: 1 X SOIL

PAGE: 2 OF 3

| SAMPLE I.D.               | PQL  | 39H<br>0.55 | Control<br>Blank |        |  |                |
|---------------------------|------|-------------|------------------|--------|--|----------------|
| LAB I.D.                  | -    | 10501       | С.В              |        |  |                |
| MOISTURE (% w/w)          | -    | 46          | -                |        |  |                |
| PHENOL                    | 0.05 | nd          | nd               |        |  |                |
| 4-NITROPHENOL             | 2.5  | nd          | nd               |        |  |                |
| m+p-CRESOLS               | 0.05 | nd          | nd               |        |  |                |
| o-CRESOL                  | 0.05 | nd          | nd               |        |  |                |
| 2-CHLOROPHENOL            | 0.05 | nd          | nd               |        |  |                |
| 4-CHLOROPHENOL            | 0.05 | nd          | nd               |        |  |                |
| 2-NITROPHENOL             | 0.5  | nd          | nd               |        |  | 2010           |
| 2,4-DIMETHYLPHENOL        | 0.05 | nd          | nd               |        |  |                |
| 4-CHLORO-3-METHYLPHENOL   | 0.1  | nd          | nd               |        |  |                |
| 2,6-DICHLOROPHENOL        | 0.1  | nd          | nd               |        |  |                |
| 2,4-DICHLOROPHENOL        | 0.1  | nd          | nd               |        |  |                |
| 2,5-DICHLOROPHENOL        | 0.1  | nd          | nd               | 18 - 1 |  |                |
| 3,5-DICHLOROPHENOL        | 0.5  | nd          | nd               |        |  | MI 100 = 100 s |
| 2,3,6-TRICHLOROPHENOL     | 0.2  | nd          | nd               |        |  |                |
| 2,3,4-TRICHLOROPHENOL     | 0.25 | nd          | nd               |        |  |                |
| 2,4,6-TRICHLOROPHENOL     | 0.3  | nd          | nd               |        |  |                |
| 2,4,5-TRICHLOROPHENOL     | 0.25 | nd          | nd               |        |  |                |
| PENTACHLOROPHENOL         | 1.0  | nd          | nd               |        |  |                |
| 2,3,4,6-TETRACHLOROPHENOL | 0.5  | nd          | nd               |        |  |                |
| SURROGATE % RECOVERY      | -    | 102         | 95               |        |  |                |

PQL = Practical Quantitation Limit

nd = Not Detected
- = Not Applicable

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm)



### Australian Analytical Laboratories

#### PHENOXY ACIDS HERBICIDES

CLIENT: GROUNDWATER TECHNOLOGY

REPORT No: 5S02034

DowElanco (NZ) Ltd.

SAMPLES: 1 X SOIL

PAGE: 3 OF 3

CONFIDENTIAL

| SAMPLE I.D.                | PQL<br>- | 39H<br>-055 | Control<br>Blank |  |   |   |
|----------------------------|----------|-------------|------------------|--|---|---|
| LAB I.D.                   | -        | 10501       | СВ               |  | + | + |
| o-CHLOROPHENOXYACETIC ACID | 0.1      | nd          | nd               |  |   |   |
| p-CHLOROPHENOXYACETIC ACID | 0.1      | nd          | nd               |  |   |   |
| MCPP (MECOPROP)            | 0.1      | nd          | nd               |  |   |   |
| MCPA                       | 0.1      | nd          | nd               |  |   |   |
| 2,4 - D                    | 0.01     | nd          | nd               |  |   |   |
| TRICHLOPYR                 | 0.01     | nd          | nd               |  |   |   |
| SILVEX (FENOPROP)          | 0.01     | nd          | nd               |  |   |   |
| 2,4,5 - T                  | 0.01     | nd          | nd               |  |   |   |

PQL = Practical Quantitation Limit

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm)

nd = Not Detected
- = Not Applicable





#### AUSTRALIAN ANALYTICAL LABORATORIES PTY LTD

A.C.N. 001 491 667

Correspondence to: P.O. Box 514 HORNSBY NSW 2077 5 Kelray Place ASQUITH NSW 2077 Telephone: (02) 482 1922 Facsimile: (02) 482 1734

### QA/QC APPENDIX No. 5S02034A

| ANALYTE                 | No. of Pages |
|-------------------------|--------------|
| Phenols                 | 1            |
| Phenoxy Acid Herbicides | 1            |

TOTAL No. of PAGES

2

Other Criteria: (except Inorganics/Nutrients)

Retention Time Window Check Standard Within Acceptance Criteria Within Acceptance Criteria

Recalibration

Within 15%

Signed:

R.G. MOONEY B.Sc.(Hons), Dip.F.D.A., M.R.A.C.I.

**Authorising Chemist** 



#### **Australian Analytical Laboratories**

#### Phenols by steam distillation - Matrix Spike/Duplicate

Reference No:

090106m1

Matrix ID:

MS Soil

Page:

1 of 1

|         | Spike          | Level            | Detected         |              | Recovery     | Details     |            |
|---------|----------------|------------------|------------------|--------------|--------------|-------------|------------|
| Analyte | Level<br>(ppm) | Spike 1<br>(ppm) | Spike 2<br>(ppm) | Rec 1<br>(%) | Rec 2<br>(%) | Average (%) | RPD<br>(%) |
| Phenol  | 1.00           | 0.98             | 0.91             | 98%          | 91%          | 95%         | 7%         |

Spike Units:mg/kg(ppm)

nd = Not Detected

- = Not Applicable

MB = Matrix Blank

All results are within the acceptance criteria

Water samples
%Recoveries within 70 - 130%
%RPD < 40% for low level (<10xPQL)
< 20% for high level (>10xPQL)

Soil samples
%Recoveries within 70 - 130%
%RPD < 50% for low level (<10xPQL)
< 30% for high level (>10xPQL)



#### **Australian Analytical Laboratories**

#### Phenoxy Acids Herbicides - Matrix Spike/Duplicate

Reference No:

102303k1

Matrix ID:

MB -soil

Page:

1 of 1

|            | Spike Level    |                  |                  |              | Recovery     | Details     |            |
|------------|----------------|------------------|------------------|--------------|--------------|-------------|------------|
| Analyte    | Level<br>(ppm) | Spike 1<br>(ppm) | Spike 2<br>(ppm) | Rec 1<br>(%) | Rec 2<br>(%) | Average (%) | RPD<br>(%) |
| o-ChIPA    | 1.00           | 0.93             | 0.99             | 93%          | 99%          | 96%         | 6%         |
| p-ChIPA    | 1.00           | 0.96             | 1.01             | 96%          | 101%         | 99%         | 4%         |
| MCPP       | 1.00           | 1.05             | 1.04             | 105%         | 104%         | 105%        | 1%         |
| MCPA       | 1.00           | 1.02             | 1.02             | 102%         | 102%         | 102%        | 0%         |
| 2,4-D      | 1.00           | 1.04             | 1.03             | 104%         | 103%         | 104%        | 0%         |
| Trichlopyr | 1.00           | 1.09             | 1.09             | 109%         | 109%         | 109%        | 0%         |
| Silvex     | 1.00           | 1.13             | 1.12             | 113%         | 112%         | 113%        | 0%         |
| 2,4,5-T    | 1.00           | 1.09             | 1.10             | 109%         | 110%         | 110%        | 1%         |

Spike Units:

mg/kg (ppm)

nd = Not Detected

- = Not Applicable

MB = Matrix Blank

All results are within the acceptance criteria

Water samples

%Recoveries within 70 - 130%

%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%Recoveries within 70 - 130%

%RPD < 50% for low level (<10xPQL)

< 30% for high level (>10xPQL)

SAMPLE ANALYSIS REPORT



#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| BH 39B       | 0.5                  | 1.3.                 |                      |
| DATE SAMPLED | 10/10/95             | 10/10/95             |                      |
| TIME SAMPLED | 08:20                | 09:00                |                      |

#### RESULTS:

| Analyte      | Conc in mg/kg | Conc in mg/kg | Conc in mg/kg |
|--------------|---------------|---------------|---------------|
|              | Sample No.1   | Sample No.2   | Sample No.3   |
| PENOXY ACIDS | 11            | 39.58         |               |
| 2,4-D        | < 1           | <1            |               |
| MCPA         | (1            | 2.34          |               |
| 2,4,5-T      | < 1           | 6.04          |               |
| МСРВ         | < 1           | 31.2          |               |
| PHENOLS      | =             | 7747          |               |
| 2,4-DCP      | (1            | 61.1          |               |
| PCOC         | <1            | 2.76          |               |
| 2,4,6-TCP    | <1            | 5.77          |               |
| 2,4,5-TCP    | <1            | 7.84          |               |

|             | 11/       |
|-------------|-----------|
| ANALYST:    | 6 Hours   |
| CHECKED BY: | 11/       |
| DATE:       | 10/10/95. |

# CONFIDENTIAL

# DowElanco (NZ) Ltd. ENVIRONMENTAL ASSESSMENT PROJECT.

### SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| BH 39C.      | 2.7.                 | 5.6.                 | 8.6                  |
| DATE SAMPLED | 10/10/95             | 10/10/95             | 10/10/95             |
| TIME SAMPLED | 10:40                | 11:15.               | 11:45.               |

#### RESULTS:

ITAL

| Analyte        | Conc in mg/kg | Conc in mg/kg | Conc in mg/kg |
|----------------|---------------|---------------|---------------|
|                | Sample No.1   | Sample No.2   | Sample No.3   |
| PENOXY ACIDS = | - 5,521.5/    | 6,30          | 5.99          |
| 2,4-D          | 2029          | 2.17          | 1.19          |
| MCPA           | 829           | <1            | <1            |
| 2,4,5-T        | 2.630         | 4.13          | 4.80          |
| МСРВ           | + 33.5        | <1            | <1            |
| PHENOLS _      | 11806.57      | 1.0           | 4.89          |
| 2,4-DCP        | 1408          | <1            | <1            |
| PCOC           | 284           | < 1           | <1            |
| 2,4,6-TCP      | 17.1          | <1            | 2.76          |
| 2,4,5-TCP      | + 97.4        | 1.0           | 2.13.         |

| ANALYST:    | 1/-1/    |
|-------------|----------|
| CHECKED BY: | 1/h      |
| DATE:       | 10/10/95 |

### SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| BH39D        | 1.5                  | 4.5                  | 8.5                  |
| DATE SAMPLED | 10-10-95 -           |                      | >                    |
| TIME SAMPLED | 15:10                | 15:30                | 16:24                |

#### RESULTS:

| Analyte      |   | Conc in mg/kg | Conc in mg/kg | Conc in mg/kg |
|--------------|---|---------------|---------------|---------------|
|              |   | Sample No.1   | Sample No.2   | Sample No.3   |
| PENOXY ACIDS | = | ND            | - 299         | - 3.33        |
| 2,4-D        |   | < 1           | 41            | <1            |
| MCPA         |   | 41            | < 1           | <1            |
| 2,4,5-T      |   | (1            | <1            | 1.86          |
| МСРВ         | 4 | (1            | 2.99          | 1.47          |
| PHENOLS      | - | 2.69          | = 48.21       | - 17.59       |
| 2,4-DCP      |   | < 1           | 25.7          | 14.5          |
| PCOC         |   | < 1           | 3.70          | <1            |
| 2,4,6-TCP    |   | < 1           | 10.6          | 2.79          |
| 2,4,5-TCP    | + | 2.69.         | 8.21          | 1.20.         |

| ANALYST:    | 07/-11    |
|-------------|-----------|
| CHECKED BY: | the       |
| DATE:       | 11/10/95, |

# DowElanco (NZ) Ltd. CONFIDENTIAL

### **ENVIRONMENTAL ASSESSMENT PROJECT.**

#### SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| 39E.         | 1:5                  | 5.5                  | 8.5.                 |
| DATE SAMPLED | 11-10-95             | 11-10-95             | 11-10-95.            |
| TIME SAMPLED | 08:40                | 09:30                | 10:17                |

#### RESULTS:

| Analyte               | Conc in mg/kg | Conc in mg/kg | Conc in mg/kg |
|-----------------------|---------------|---------------|---------------|
|                       | Sample No.1   | Sample No.2   | Sample No.3   |
| PHENOXY ACIDS         |               |               |               |
| 2,4-D                 | <1            | <1            | < 1           |
| MCPA                  | (1            | <1            | <1            |
| 2,4,5-T               | <1            | (1            | <1            |
| МСРВ                  | <1            | <1            | <1            |
| PHENOLS               |               |               |               |
| 2,4-DCP               | <1            | <1            | <1            |
| PCOC                  | (1            | <1            | <1            |
| 2,4,6-TCP             | (1            | 41            | <1            |
| 2,4,5-TCP             | (1            | (1            | (1            |
| UNKNOWNS (See Note 1) | <1            | 2.07 (1)      | 5.40 (1)      |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | 1 that    |
|-------------|-----------|
| CHECKED BY: | bother    |
| DATE:       | 11/10/95. |

#### SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| 39F.         | 0.5                  | 7.5                  | 9.7                  |
| DATE SAMPLED | 11:10:95             | 11:10:95             | 11:10:95.            |
| TIME SAMPLED | 13:30                | 14:50                | 15:15.               |

#### RESULTS:

| Analyte               | Conc in mg/kg | Conc in mg/kg | Conc in mg/kg |
|-----------------------|---------------|---------------|---------------|
|                       | Sample No.1   | Sample No.2   | Sample No.3   |
| PHENOXY ACIDS         | 551.5         | 57.1          | 1,25          |
| 2,4-D                 | 25.3          | 19.5          | 1.25          |
| MCPA                  | < 1           | 25.0          | < 1           |
| 2,4,5-T               | 263           | 12.6          | <1            |
| МСРВ                  | 263           | < 1           | <1            |
| PHENOLS               | 546.2         | 17.8          | ND            |
| 2,4-DCP               | 152           | 13.9          | (1            |
| PCOC                  | 3.58          | 3.90          | (1            |
| 2,4,6-TCP             | 243           | < 1           | 51            |
| 2,4,5-TCP             | 135           | < 1           | (1            |
| UNKNOWNS (See Note 1) | 12.6.         |               |               |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | 6.2.1     |
|-------------|-----------|
| CHECKED BY: | 1 the     |
| DATE:       | 12-10-95. |

# DowElanco (NZ) Ltd. CONFIDENTIAL

### **ENVIRONMENTAL ASSESSMENT PROJECT.**

#### SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| 396          | 0.5                  | 3.5                  | 7.5                  |
| DATE SAMPLED | 12-10-95-            |                      | <del></del>          |
| TIME SAMPLED | 08:20                | 09'.04               | 10:15                |

#### RESULTS:

| Analyte               | Conc in mg/kg | Conc in mg/kg | Conc in mg/kg |
|-----------------------|---------------|---------------|---------------|
|                       | Sample No.1   | Sample No.2   | Sample No.3   |
| PHENOXY ACIDS         | *             | K             | 4             |
| 2,4-D                 | < 1           | <1            | <1            |
| МСРА                  | < 1           | <1            | <.            |
| 2,4,5-T               | < 1           | <1            | < i           |
| МСРВ                  | < 1           | 1             | <1            |
| PHENOLS               | 44            | 84            | **            |
| 2,4-DCP               | < 1           | <1            | < '           |
| PCOC                  | <1            | <1            | 41            |
| 2,4,6-TCP             | 1             | < 1           | <:            |
| 2,4,5-TCP             | 21            | <1            | < !           |
| UNKNOWNS (See Note 1) |               |               |               |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | ill height |
|-------------|------------|
| CHECKED BY: | lita       |
| DATE:       | 12/1 25    |

DowElanco (NZ) Ltd.

CONFIDENTIAL

#### SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| 39 H         | 0.5                  | 1.5                  | 8.2                  |
| DATE SAMPLED | 12-10-95-            |                      | >                    |
| TIME SAMPLED | 11:30                | 13:00                | 14:23                |

#### RESULTS:

| Analyte               | Conc in mg/kg | Conc in mg/kg | Conc in mg/kg |
|-----------------------|---------------|---------------|---------------|
|                       | Sample No.1   | Sample No.2   | Sample No.3   |
| PHENOXY ACIDS         |               |               |               |
| 2,4-D                 | <1            | < /           | < 1           |
| MCPA                  | <1            | <1            | <1            |
| 2,4,5-T               | < 1           | 41            | < 1           |
| МСРВ                  | <1            | 21            | <1            |
| PHENOLS               |               |               |               |
| 2,4-DCP               | < 1           | < 1           | Z1            |
| PCOC                  | < 1           | <i>i</i> 1    | <i>(1)</i>    |
| 2,4,6-TCP             | <1            | <1            | 21            |
| 2,4,5-TCP             | < 1           | < !           | <1            |
| UNKNOWNS (See Note 1) |               |               |               |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | Howief  |
|-------------|---------|
| CHECKED BY: | in      |
| DATE:       | 13/5/45 |

# DowElanco (NZ) Ltd.

#### SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| 391          | 0.5                  | 5.5                  | 8.2                  |
| DATE SAMPLED | 12-10-95             | 12-10-95             | 13-10-95             |
| TIME SAMPLED | 13:51                | 16:50                | 08:15                |

#### RESULTS:

| Analyte               | Conc in mg/kg | Conc in mg/kg    | Conc in mg/kg |
|-----------------------|---------------|------------------|---------------|
|                       | Sample No.1   | Sample No.2      | Sample No.3   |
| PHENOXY ACIDS         |               |                  |               |
| 2,4-D                 | 337           | <1               | (1            |
| MCPA                  | 16.5          | 41               | <1            |
| 2,4,5-T               | £ 1714        | . < 1            | <1            |
| МСРВ                  | 4:15          | </td <td>21</td> | 21            |
| PHENOLS               |               |                  |               |
| 2,4-DCP               | <1            | <1               | <1            |
| PCOC                  | \$ 22.9       | <1               | <1            |
| 2,4,6-TCP             | <1            | 41               | <1            |
| 2,4,5-TCP             | 37.5          | <1               | <1            |
| UNKNOWNS (See Note 1) | 4,6           | <1               | <1            |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | CPBiesyek! |
|-------------|------------|
| CHECKED BY: |            |
| DATE:       | 13/10/95   |

#### SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| B'H39J       | 20.7                 |                      |                      |
| DATE SAMPLED | 20-10-95             |                      |                      |
| TIME SAMPLED | 09:15                |                      |                      |

#### RESULTS:

| Analyte               | Conc in mg/kg | Conc in mg/kg | Conc in mg/kg |
|-----------------------|---------------|---------------|---------------|
|                       | Sample No.1   | Sample No.2   | Sample No.3   |
| PHENOXY ACIDS         |               |               |               |
| 2,4-D                 | <1            |               |               |
| MCPA                  | <' i          |               |               |
| 2,4,5-T               | <1            |               |               |
| МСРВ                  | 1.03          |               |               |
| PHENOLS               |               |               |               |
| 2,4-DCP               | < 1           |               |               |
| PCOC                  | = 1           |               |               |
| 2,4,6-TCP             | < 1           |               |               |
| 2,4,5-TCP             | 21            |               |               |
| UNKNOWNS (See Note 1) |               |               |               |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | Ettor inthe |
|-------------|-------------|
| CHECKED BY: | 1. Am       |
| DATE:       | 2412/05     |



#### SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| 39K          | 23.                  |                      |                      |
| DATE SAMPLED | 24-10-95             |                      |                      |
| TIME SAMPLED | 15'.00               |                      |                      |

#### RESULTS:

| Analyte               | Conc in mg/kg | Conc in mg/kg | Conc in mg/kg |
|-----------------------|---------------|---------------|---------------|
|                       | Sample No.1   | Sample No.2   | Sample No.3   |
| PHENOXY ACIDS         |               |               |               |
| 2,4-D                 | 5.11          |               |               |
| MCPA                  | 1.60          |               |               |
| 2,4,5-T               | 1.76          |               |               |
| МСРВ                  | 370           |               |               |
| PHENOLS               |               |               |               |
| 2,4-DCP               | 9,50          |               |               |
| PCOC                  | 21            |               |               |
| 2,4,6-TCP             | 2.55          |               |               |
| 2,4,5-TCP             | 1/2           |               |               |
| UNKNOWNS (See Note 1) |               |               | TATE AND      |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | Frijk    |
|-------------|----------|
| CHECKED BY: | 6 Al     |
| DATE:       | 24/15/25 |

# DowElanco (N Z) Ltd. CONFIDENTIAL

#### SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| BHEAL        | 20.7                 | •                    |                      |
| DATE SAMPLED | 76-16-95             |                      |                      |
| TIME SAMPLED | 16:00                |                      |                      |

#### RESULTS:

| Analyte               | Conc in mg/kg | Conc in mg/kg | Conc in mg/kg |
|-----------------------|---------------|---------------|---------------|
|                       | Sample No.1   | Sample No.2   | Sample No.3   |
| PHENOXY ACIDS         |               |               |               |
| 2,4-D                 | <1            |               |               |
| MCPA                  | 21            |               |               |
| 2,4,5-T               | < .           |               |               |
| МСРВ                  |               |               |               |
| PHENOLS               |               |               |               |
| 2,4-DCP               |               |               |               |
| PCOC                  | -:1           |               |               |
| 2,4,6-TCP             | - 1           |               |               |
| 2,4,5-TCP             |               |               |               |
| UNKNOWNS (See Note 1) |               |               |               |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | 6916 igh |
|-------------|----------|
| CHECKED BY: | 1/1      |
| DATE:       | 27 6/25  |

#### SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| BH甲12        | 18.9                 |                      |                      |
| DATE SAMPLED | 26-10-95             |                      |                      |
| TIME SAMPLED | 08:30                |                      |                      |

#### RESULTS:

| Analyte               | Conc in mg/kg | Conc in mg/kg    | Conc in mg/kg |
|-----------------------|---------------|------------------|---------------|
|                       | Sample No.1   | Sample No.2      | Sample No.3   |
| PHENOXY ACIDS         |               |                  |               |
| 2,4-D                 | (1            |                  |               |
| MCPA                  | (1            |                  |               |
| 2,4,5-T               | ()            |                  |               |
| МСРВ                  | 11            |                  |               |
| PHENOLS               |               |                  |               |
| 2,4-DCP               | < 1           |                  |               |
| PCOC                  | 2.            |                  |               |
| 2,4,6-TCP             | 271           | H NEW COMMISSION |               |
| 2,4,5-TCP             | .<1           |                  |               |
| UNKNOWNS (See Note 1) |               |                  |               |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

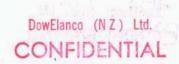
| ANALYST:    | Millian Sell |
|-------------|--------------|
| CHECKED BY: | the          |
| DATE:       | 27 6/35      |

# DowElanco (N Z) Ltd. CONFIDENTIAL

#### **ENVIRONMENTAL ASSESSMENT PROJECT.**

#### SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION


| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| 16B          | 8.5                  | 11.3                 | 20,5                 |
| DATE SAMPLED | 18-10-95+            |                      |                      |
| TIME SAMPLED | 10:00                | 10:50                | 14:10                |

PLEASE QUANTELY DETECTABLE CONCENTRATIONS FOR XYLENG RANGE (PURGERALE MANAMETEC HYDROGREGONS)
RESULTS:

| Analyte               | Conc in mg/kg | Conc in mg/kg | Conc in mg/kg |
|-----------------------|---------------|---------------|---------------|
| *                     | Sample No.1   | Sample No.2   | Sample No.3   |
| PHENOXY AGDS          |               |               |               |
| 2,4-D                 | <1            | <1            | 1.13          |
| MCPA                  | 41            | 4             | <1            |
| 2,4,5-T               | <1            | . <1          | 1.08          |
| мсрв                  | <1            | <1            | <1            |
|                       |               |               |               |
| 2,4-DCP               | <1            | <1            | <1            |
| PCOC                  | <1            | <1            | <1            |
| 2,4,6-TCP             | <1            | 41            | 41            |
| 2,4,5-TCP             | <1            | 41            | <1            |
| UNKNOWNS (See Note 1) |               |               |               |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | CABisieff |
|-------------|-----------|
| CHECKED BY: | UM.       |
| DATE:       | 19/10/95  |



#### SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| BH 16C       | 10.5                 | 14.45                | 20.5                 |
| DATE SAMPLED | 19-10-95             | 19-10-95             | 19-10-45             |
| TIME SAMPLED | 09:55                | 11.05                | 14:10                |

#### RESULTS:

| Analyte               | Conc in mg/kg | Conc in mg/kg | Conc in mg/kg |
|-----------------------|---------------|---------------|---------------|
| The Hot has the       | Sample No.1   | Sample No.2   | Sample No.3   |
| PHENOXY ACIDS         |               |               |               |
| 2,4-D                 | 4.5           | 12.04         | 1.01          |
| MCPA                  | 2.42          | <1            | <1            |
| 2,4,5-T               | 15.11         | 13.04         | 1.60          |
| МСРВ                  | <1            | 41            | <1            |
| PHENOLS               |               |               |               |
| 2,4-DCP               | 17.85         | < i           | <1            |
| PCOC                  | 41            | <1            | <1            |
| 2,4,6-TCP             | 1.53          | 4.1           | <1            |
| 2,4,5-TCP             | €17.33        | 41            | <1            |
| UNKNOWNS (See Note 1) | 31.55(1)      |               |               |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | Phayf    |
|-------------|----------|
| CHECKED BY: | both.    |
| DATE:       | 24/10/95 |

Male samples did nov show significant amounts of unknowns.

# ENVIRONMENTAL ASSESSMENT PROJECT. SAMPLE ANALYSIS REPORT (WATER)

#### SAMPLE IDENTIFICATION & RESULTS

| BORE HOLE NO          | 43           | 4-3S         | <b>4</b> 2   | Field C      |
|-----------------------|--------------|--------------|--------------|--------------|
| DATE SAMPLED          | 31/11/35     | 31/10/95     | 1/11/95      | 1/11/95      |
| TIME SAMPLED          | 1100         | 1130         | 0300         | am           |
| Analyte               | Conc in mg/L | Conc in mg/L | Conc in mg/L | Conc in mg/L |
| PHENOXY ACIDS         |              |              |              |              |
| 2,4-D                 | <0.03        | < 0.03       | (0.03        | (0.03        |
| MCPA                  | < 0.03       | (0.03        | (0.07        | <0.00        |
| 2,4,5-T               | < 0.03       | < 0.03       | < 0.03       | <0.03        |
| MCPB                  | (0.03        | (0.03        | < 0.03       | < 0.03       |
| PHENOLS               |              |              |              |              |
| 2,4-DCP               | < 0.03       | < 0.03       | (0.03        | < 0.03       |
| PCOC                  | < 0.03       | (0.03        | (003         | < 0.02       |
| 2,4,6-TCP             | (0.03        | < 0.03       | < 0.03       | (0.03        |
| 2,4,5-TCP             | (0.03        | < 0.03       | (0.03        | (1) 13       |
| UNKNOWNS (See Note 1) | 0.79(1)      | 0.91(1)      | 03411)       | 0 35 (1)     |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | C Biesiery. |
|-------------|-------------|
| CHECKED BY: | 11/1/       |
| DATE:       | 2/11/95     |



### SAMPLE ANALYSIS REPORT (WATER)

#### SAMPLE IDENTIFICATION & RESULTS

| BORE HOLE NO          | 28           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A STATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Carried San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE SAMPLED          | 13/10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TIME SAMPLED          | am .         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s |
| Analyte               | Conc in mg/L | Conc in mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conc in mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Conc in mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PHENOXY ACIDS         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,4-D                 | 10.03        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MCPA                  | (0,03        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,4,5-T               | (0.03        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | To the state of th |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| МСРВ                  | 40.03        | A STATE OF S |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PHENOLS               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,4-DCP               | <0.03        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCOC                  | <0.03        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,4,6-TCP             | <0.03        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE RESERVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2,4,5-TCP             | (0.03        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UNKNOWNS (See Note 1) | 0.353        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | Ming!   |
|-------------|---------|
| CHECKED BY: | 1/1/-   |
| DATE:       | 15/5/35 |

## SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| 24-10-95     | SB1-1.5              | SB1-2,5              |                      |
| DATE SAMPLED | 24-10-95             | 24-10-95             |                      |
| TIME SAMPLED | 08.54                | 09:10                |                      |

#### RESULTS:

| Analyte               | Conc in mg/kg | Conc in mg/kg | Conc in mg/kg |
|-----------------------|---------------|---------------|---------------|
|                       | Sample No.1   | Sample No.2   | Sample No.3   |
| PHENOXY ACIDS         |               |               |               |
| 2,4-D                 | <.1           | <1            |               |
| MCPA                  | 21            | 21            |               |
| 2,4,5-T               | <1            | <1            |               |
| МСРВ                  | 11            | <1            |               |
| PHENOLS               |               |               |               |
| 2,4-DCP               | 21            | <1            |               |
| PCOC                  | <1            | <i>C</i> 1    |               |
| 2,4,6-TCP             | <1            | .4            |               |
| 2,4,5-TCP             | £ .           |               |               |
| UNKNOWNS (See Note 1) |               |               |               |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

|             | /        |
|-------------|----------|
| ANALYST:    | the ruft |
| CHECKED BY: | 1/1-     |
| DATE:       | 24/11/15 |

# CONFIDENTIAL ENVIRONMENTAL ASSESSMENT PROJECT.

# SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| 39A.         | 2.9                  | . 5.5                | 8.5                  |
| DATE SAMPLED | 9/10/95              | 9/10/95              | 9/10/95              |

#### RESULTS:

| Analyte      |   | Conc in mg/kg | Conc in mg/kg | Conc in mg/kg |
|--------------|---|---------------|---------------|---------------|
|              |   | Sample No.1   | Sample No.2   | Sample No.3   |
| PENOXY ACIDS | = | 74.56         | 19.86         | 2.11          |
| 2,4-D        |   | <1            | (1            | < 1           |
| MCPA         |   | (1            | <1            | < 1           |
| 2,4,5-T      |   | 7.66          | 17.0          | 2.11          |
| МСРВ         |   | 66.9          | 2.86          | <1            |
| PHENOLS      | = | 129.71        | 75,3          | 7.92          |
| 2,4-DCP      |   | 2.71          | 38.8          | 3.35          |
| PCOC         |   | < 1           | 7.91          | 1.31          |
| 2,4,6-TCP    |   | 41            | 8.79          | 1.19          |
| 2,4,5-TCP    |   | 127           | 19.8          | 2.07          |

| ANALYST:    | 1 things |
|-------------|----------|
| CHECKED BY: | both.    |
| DATE:       | 10/10/95 |

# DowElanco (NZ) Ltd. CONFIDENTIAL

#### SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE<br>No.1 | DEPTH SAMPLE<br>No.2 | DEPTH SAMPLE<br>No.3 |
|--------------|----------------------|----------------------|----------------------|
| 39A          | 20.1m                |                      |                      |
| DATE SAMPLED | 13-10-95             |                      |                      |
| TIME SAMPLED | 13:17                |                      |                      |

#### RESULTS:

| Analyte               | Conc in mg/kg | Conc in mg/kg | Conc in mg/kg |
|-----------------------|---------------|---------------|---------------|
|                       | Sample No.1   | Sample No.2   | Sample No.3   |
| PHENOXY ACIDS         |               |               |               |
| 2,4-D                 | <1            |               |               |
| MCPA                  | <1            |               |               |
| 2,4,5-T               | 11            |               |               |
| МСРВ                  | <1            |               |               |
| PHENOLS               |               |               |               |
| 2,4-DCP               | <1            |               |               |
| PCOC                  | 21            |               |               |
| 2,4,6-TCP             | i j           |               |               |
| 2,4,5-TCP             | <1            |               |               |
| UNKNOWNS (See Note 1) |               |               |               |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | those of |
|-------------|----------|
| CHECKED BY: | ith      |
| DATE:       | 17/1/25  |

# DowElanco (NZ) Ltd. CONFIDENTIAL

#### **ENVIRONMENTAL ASSESSMENT PROJECT.**

#### SAMPLE ANALYSIS REPORT (WATER)

#### SAMPLE IDENTIFICATION & RESULTS

| BORE HOLE NO          | 33           | 335          | 40           | 31202        |
|-----------------------|--------------|--------------|--------------|--------------|
| DATE SAMPLED          | 13/10        | 13/10        | 13/10        |              |
| TIME SAMPLED          | 16:30        | 17:00        | 17:45        |              |
| Analyte               | Conc in mg/L | Conc in mg/L | Conc in mg/L | Conc in mg/L |
| PHENOXY ACIDS         |              |              |              |              |
| 2,4-D                 | 0.229        | 0.235        | 60.03        |              |
| MCPA                  | 0.224        | 0.228        | <0.03        |              |
| 2,4,5-T               | 0.745        | 0.745        | 20.03        |              |
| МСРВ                  | 10103        | L0103        | 20.03        |              |
| PHENOLS               |              |              |              |              |
| 2,4-DCP               | 60.03        | 10.03        | 20,03        |              |
| PCOC                  | 0.132        | 0.133        | (1,13        | THE STATE    |
| 2,4,6-TCP             | (0.03        | 20,03        | 40.03        |              |
| 2,4,5-TCP             | 10.03        | 20,03        | 20.03        |              |
| UNKNOWNS (See Note 1) | 1.263        | 1. 323       | 0.372        |              |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

|             | /        |  |  |
|-------------|----------|--|--|
| ANALYST:    | May      |  |  |
| CHECKED BY: | 1 the    |  |  |
| DATE:       | 16/10/25 |  |  |





#### SAMPLE IDENTIFICATION & RESULTS

| BORE HOLE NO          | 37           | 34             | 28B          | 36           |
|-----------------------|--------------|----------------|--------------|--------------|
| DATE SAMPLED          | 13/10        | 13/10          | 13/10        | 13/10        |
| TIME SAMPLED          | am           | am             | am           | am           |
| Analyte               | Conc in mg/L | Conc in mg/L   | Conc in mg/L | Conc in mg/L |
| PHENOXY ACIDS         |              |                |              |              |
| 2,4-D                 | (0.03        | 20.03          | LU103        | <0.03        |
| MCPA                  | LO 103       | 10.051         | <0.03        | 40.03        |
| 2,4,5-T               | 60.03        | 2.0.03         | <0.03        | 60,03        |
| МСРВ                  | <0.03        | (0.03          | (0.03        | (0.03        |
| PHENOLS               |              |                |              |              |
| 2,4-DCP               | 20.03        | <0.03          | 40,03        | (0.03        |
| PCOC                  | 40,03        | 40103          | 40.03        | (0.03        |
| 2,4,6-TCP             | <6.03        | 20.03          | 40.03        | 40.03        |
| 2,4,5-TCP             | <0.03        | 40.03          | <0.03        | (1,13        |
| UNKNOWNS (See Note 1) | 0.502        | c. <b>5</b> 57 | 6.46.4       | 0.334        |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | Ellingfik |
|-------------|-----------|
| CHECKED BY: | 11/1      |
| DATE:       | 16/11/30  |

# DOWEIANCO (NZ) Ltd. ENVIRONMENTAL ASSESSMENT PROJECT. CONFIDENTIAL SAMPLE ANALYSIS REPORT (WATER)

#### SAMPLE IDENTIFICATION & RESULTS

| BORE HOLE NO          | 16A          | 41           | 4-2          |              |
|-----------------------|--------------|--------------|--------------|--------------|
| DATE SAMPLED          | 31/10/95     | 31/10/95     | 31/10/95     |              |
| TIME SAMPLED          | 0700         | 6915         | 0815         |              |
| Analyte               | Conc in mg/L | Conc in mg/L | Conc in mg/L | Conc in mg/L |
| PHENOXY ACIDS         |              |              |              |              |
| 2,4-D                 | < 0.03       | < 0.03       | < 0.03       |              |
| MCPA                  | (0.03        | < 0.03       | < 0.03       |              |
| 2,4,5-T               | 0.11         | (0.03        | < 0.03       |              |
| МСРВ                  | <0.03        | (0.03        | < 0.03       |              |
| PHENOLS               |              |              |              |              |
| 2,4-DCP               | (0.03        | < 0.03       | < 0 03       |              |
| PCOC                  | < 0.03       | (0.03        | < 0 03       |              |
| 2,4,6-TCP             | < 0.03       | < 0.03       | (0.03        |              |
| 2,4,5-TCP             | (0.03        | (0.03        | 0.03         |              |
| UNKNOWNS (See Note 1) | 1 2013)      | 2.72(1)      | 0-77(1)      |              |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | C Brenen. |
|-------------|-----------|
| CHECKED BY: | 1111      |
| DATE:       | 2/11/95   |

### GRANDWARER. SAMPLE ANALYSIS REPORT

#### SAMPLE IDENTIFICATION

| BORE HOLE NO | DEPTH SAMPLE | DEPTE SAMPLE | DEPTH SAMPLE<br>Ne.3 |
|--------------|--------------|--------------|----------------------|
|              | 39           | 393          | 15                   |
| DATE SAMPLED | 12/10        | 12/10        | 12/10                |
| TIME SAMPLED | 14 10        | 15:00        | 13.00                |

#### RESULTS:

|                       | 39             | 398            | 16             |  |
|-----------------------|----------------|----------------|----------------|--|
| Analyte               | Conc in Rag/kg | Conc in nig/kg | Conc in rag/kg |  |
|                       | Sample No.1    | Sample No.2    | Sample No.3    |  |
| PHENOXY ACIDS         |                |                |                |  |
| 2,4-D                 | <0.03          | 10,03          | Cc.63          |  |
| MCPA                  | 40.03          | (0.03          | 40.03          |  |
| 2,4,5-T               | 60,03          | (0.03          | · (2103        |  |
| MĆPB                  | 10.63          | <0.03          | (0.03          |  |
| PHENOLS               |                |                |                |  |
| 2,4-DCP               | (1.13          | 40.03          | <0.03          |  |
| PCOC                  | 40.03          | 20.03          | (0.03          |  |
| 2,4,6-TCP             | <6.03          | 50.03          | (0.03          |  |
| 2,4,5-TCP             | 20.03          | 40.03          | <0.03          |  |
| UNKNOWNS (See Note 1) | 1.125          | 0.623          | 6.756          |  |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | Mingh   |
|-------------|---------|
| CHECKED BY: | Vin     |
| DATE:       | 16/1 25 |

DowElanco (NZ) Ltd.

# CONFIDENTIAL

### SAMPLE ANALYSIS REPORT (WATER)

#### SAMPLE IDENTIFICATION & RESULTS

| BORE HOLE NO          | 39 PT 1      | 39 PT2       |              |              |
|-----------------------|--------------|--------------|--------------|--------------|
| DATE SAMPLED          | 30/10/95     | 30/10/95     |              |              |
| TIME SAMPLED          | 4 pm         | // Am        |              |              |
| Analyte               | Conc in mg/L | Conc in mg/L | Conc in mg/L | Conc in mg/L |
| PHENOXY ACIDS         |              |              |              |              |
| 2,4-D                 | 40.03        | 60.03        |              |              |
| MCPA                  | 10:03        | 20103        |              |              |
| 2,4,5-T               | <0.03        | C.032        |              |              |
| МСРВ                  | <0.03        | 40.03        |              |              |
| PHENOLS               |              |              |              |              |
| 2,4-DCP               | <0.03        | 40.03        |              |              |
| PCOC                  | 20.03        | <0.03        |              |              |
| 2,4,6-TCP             | 20,03        | 20.03        | A STREET B   |              |
| 2,4,5-TCP             | 41.13        | <0.03        |              |              |
| UNKNOWNS (See Note 1) |              | (.(2 (2)     |              |              |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | HE was the |
|-------------|------------|
| CHECKED BY: | i dhe      |
| DATE:       | 31/2 145   |





#### SAMPLE IDENTIFICATION & RESULTS

| BORE HOLE NO          | 39 PT3       | 33 PT4       | 33PT 5       |              |  |
|-----------------------|--------------|--------------|--------------|--------------|--|
| DATE SAMPLED          | 30/10/25     | 31/10/25     | 1/11/95      |              |  |
| TIME SAMPLED          | 2200         | 1000         | 1000         |              |  |
| Analyte               | Conc in mg/L | Conc in mg/L | Conc in mg/L | Conc in mg/L |  |
| PHENOXY ACIDS         |              |              |              |              |  |
| 2,4-D                 | < 0.03       | < 0.03       | < 0.03       |              |  |
| MCPA                  | < 0.03       | < 0.03       | <0.03        |              |  |
| 2,4,5-T               | 2.03         | 0.03         | 0.04         |              |  |
| MCPB                  | (0.03        | < 0.03       | (0.03        |              |  |
| PHENOLS               |              |              |              |              |  |
| 2,4-DCP               | <0.03        | (0.03        | < 0.03       |              |  |
| PCOC                  | < 0.03       | < 0.03       | < 0.03       |              |  |
| 2,4,6-TCP             | (0.03        | < 0.03       | (0.03        |              |  |
| 2,4,5-TCP             | (0.03        | < 0.03       | < 5.00       |              |  |
| UNKNOWNS (See Note 1) | 0.44 (1)     | 2.44 (1)     | 2.44(1)      |              |  |

Note 1 Compounds detected by the HPLC analysis that are of sufficiently different retention time (>+/-5% relative) to the analyte being determined have been quantified using response factors of the analyte with closest rt. These unknowns have been added together and reported as TOTAL UNKNOWNS with the number of unknowns printed in brackets beside the concentration in the result column.

| ANALYST:    | C Cieneky/ |  |  |  |
|-------------|------------|--|--|--|
| CHECKED BY: | 1 / / /    |  |  |  |
| DATE:       | 2/11/95    |  |  |  |



DowElanco (NZ) Ltd.

CONFIDENTIAL

#### INDUSTRIAL AND ENVIRONMENTAL SERVICES DIVISION

Trading as Australian Analytical Laboratories Pty Ltd

A.C.N. 001 491 667

Correspondence to:

P.O. Box 514 HORNSBY NSW 2077 5 Kelray Place

ASQUITH NSW 2077 Telephone: (02) 482 1922

Facsimile: (02) 482 1734

#### **CERTIFICATE OF ANALYSIS**

DATE:

8/12/95

REPORT No: 5S02492/1

Page: 1 of 2

CLIENT:

Groundwater Technology - New Zealand

SAMPLES:

2 x Waters

BATCH:

N1034

LAB Nos.:

12339 - 12340

DATE RECEIVED:

7/11/95

DATE COMMENCED:

9/11/95

METHOD:

APHA 18th Edn.

RESULTS:

All samples analysed as received.

See Attached page for results

R.G. MOONEY B.Sc.(Hons), Dip.F.D.A., M.R.A.C.I.

**Authorising Chemist** 



DowElanco (NZ) Ltd. CONFIDENTIAL

GROUNDWATER TECHNOLOGY - NEW ZEALAND CLIENT:

REPORT No:

5S02492/1

SAMPLES: 2 x WATERS, N1034

PAGE: 2 OF 2

METHOD REFERENCE: APHA 18th Ed. (Unless otherwise specified)

| SAMPLE I.D. | AAL<br>meth. Ref. | PQL<br>- | UNITS<br>- | 391C  | BH<br>2                                                                                                       |   |   |
|-------------|-------------------|----------|------------|-------|---------------------------------------------------------------------------------------------------------------|---|---|
| LAB I.D.    | -                 | -        |            | 12339 | 12340                                                                                                         | - | 1 |
| BOD (20) *  | W026              | 5        | mg/L       | 11    | 18                                                                                                            |   |   |
|             |                   |          |            |       |                                                                                                               |   |   |
|             |                   |          |            |       |                                                                                                               |   |   |
|             |                   |          |            |       |                                                                                                               |   |   |
|             |                   |          |            |       |                                                                                                               |   |   |
|             |                   |          |            |       |                                                                                                               |   |   |
|             |                   |          |            |       |                                                                                                               |   |   |
|             |                   |          |            |       | a seessati |   |   |

\* Nata Registration does not cover the performance of this service.

PQL = Practical Quantitation Limit

nd = Less than PQL

= Not Applicable

\*\* = USEPA 9060 (Mod.)





Association of Testing Authorities, Australia. The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Registered No. 1464

# DowElanco (NZ) Ltd. CONFIDENTIAL

#### INDUSTRIAL AND ENVIRONMENTAL SERVICES DIVISION

Trading as Australian Analytical Laboratories Pty Ltd

A.C.N. 001 491 667

5 Kelray Place

Correspondence to:

ASQUITH NSW 2077

P.O. Box 514

Telephone: (02) 482 1922

HORNSBY NSW 2077

Facsimile: (02) 482 1734

### CERTIFICATE OF ANALYSIS

DATE:

20/11/95

REPORT No: 5S02034

Page: 1 of 15 QA/QC Appendix

CLIENT:

Groundwater Technology New Zealand

SAMPLES:

15 x Waters

REFERENCE:

N1034

LAB Nos.:

10486 - 10500

DATE RECEIVED:

18/10/95

DATE COMMENCED:

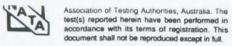
18/10/95

|     | TEST:                           | METHOD: |
|-----|---------------------------------|---------|
| 1.  | Organochlorine Pesticides/PCB's | E011    |
| 2.  | Total Petroleum Hydrocarbons    | E081    |
| 3.  | Methane, Ethane, Ethene         | M11/1   |
| 4   | VHC                             | E042    |
| 5.  | BOD (5), BOD (20)               | W026    |
| 6.  | pH                              | W031    |
| 7.  | Conductivity                    | W032    |
| 8.  | Total Dissolved Solids          | W033    |
| 9.  | Chemical Oxygen Demand          | E038    |
| 10. | Total Organic Carbon            | W048    |

#### RESULTS:

All samples analysed as received.

This report replaces any preliminary results issued on 9/11/95


20/11/95

27/11/95

Please see attached pages for results

R.G. MOONEY B.Sc. (Hons), Dip.F.D.A., M.R.A.C.I.

**Authorising Chemist** 







ORGANOCHLORINE PESTICIDES / PCBs (OC/PCB) (PCB 1016,1221,1232,1242,1248,1254,1260)

DowElanco (NZ) Ltd.

5S02034CONFIDENTIAL CLIENT: GROUNDWATR TECHNOLOGY - NEW ZEALAND REPORT No:

SAMPLES: 11 x WATERS, N1034 PAGE: 2 OF 15

|                      | PQL   |       |       |       |       |       |       |
|----------------------|-------|-------|-------|-------|-------|-------|-------|
| SAMPLE I.D.          | -     | BH 15 | BH 40 | BH 39 | ВН39В | BH33  | BH33S |
| LAB I.D.             | -     | 10486 | 10489 | 10490 | 10491 | 10492 | 10493 |
| MOISTURE % w/w       | -     | -     | -     | •     | -     | -     | -     |
| H.C.B.               | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| α-ВНС                | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| LINDANE              | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| HEPTACHLOR           | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| ALDRIN               | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| β-внс                | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| δ-ВНС                | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| OXYCHLORDANE         | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| HEPTACHLOR EPOXIDE   | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| α-ENDOSULFAN         | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| γ-CHLORDANE          | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| α-CHLORDANE          | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| trans- NONACHLOR     | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| TOTAL DDE's          | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| DIELDRIN             | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| ENDRIN               | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| TOTAL DDD's          | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| β-ENDOSULPHAN        | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| TOTAL DDT's          | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| ENDOSULPHAN SULPHATE | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| METHOXYCHLOR         | 0.001 | nd    | nd    | nd    | nd    | nd    | nd    |
| PCB's                | 0.01  | nd    | nd    | nd    | nd    | nd    | nd    |
| PCB IDENTIFICATION   | -     | -     | -     | -     | -     | -     | -     |
| SURROGATE % RECOVERY |       | 99    | 107   | 105   | 113   | 114   | 110   |

PQL = Practical Quantitation Limit

nd = Less than PQL = Not Applicable

(W) Water: mg/l (ppm)





ORGANOCHLORINE PESTICIDES / PCBs (OC/PCB) (PCB 1016,1221,1232,1242,1248,1254,1260)

DowElanco QMENTLIGROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No: 5S02034

CONFIDENTIAL

SAMPLES:

11 x WATERS, N1034

PAGE:

3 OF 15

| SAMPLE I.D.          | PQL   | BH34  | BH37  | BH28  | BH36  | BH28B | Control |
|----------------------|-------|-------|-------|-------|-------|-------|---------|
| LAB I.D.             |       | 10494 | 10495 | 10498 | 10499 | 10500 | СВ      |
| MOISTURE % w/w       | T -   | -     | -     | -     | -     | -     | T -     |
| H.C.B.               | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| α-BHC                | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| LINDANE              | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| HEPTACHLOR           | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| ALDRIN               | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| β-внс                | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| δ-внс                | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| OXYCHLORDANE         | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| HEPTACHLOR EPOXIDE   | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| α-ENDOSULFAN         | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| γ-CHLORDANE          | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| α-CHLORDANE          | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| trans- NONACHLOR     | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| TOTAL DDE's          | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| DIELDRIN             | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| ENDRIN               | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| TOTAL DDD's          | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| β-ENDOSULPHAN        | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| TOTAL DDT's          | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| ENDOSULPHAN SULPHATE | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| METHOXYCHLOR         | 0.001 | nd    | nd    | nd    | nd    | nd    | nd      |
| PCB's                | 0.01  | nd    | nd    | nd    | nd    | nd    | nd      |
| PCB IDENTIFICATION   | -     | -     | -     | -     | -     | -     | -       |
| SURROGATE % RECOVERY |       | 101   | 102   | 105   | 115   | 116   |         |

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

(W) Water: mg/l (ppm)





#### TOTAL PETROLEUM HYDROCARBONS/BTEX (TPH/BTEX)

DowElanco (NZ) Ltd.

CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No: 5S02034

SAMPLES: 11 x WATERS PAGE: 4 OF 15

| SAMPLE I.D.      | PQL | BH 15 | BH 40 | BH 39  | BH 39B | BH 33 | BH 33S |
|------------------|-----|-------|-------|--------|--------|-------|--------|
| LAB I.D.         | -   | 10486 | 10489 | 10490  | 10491  | 10492 | 10493  |
| DEPTH (m)        | -   | -     |       | -      | -      | -     | -      |
| MOISTURE (% w/w) | -   | -     | -     | -      | -      | -     | -      |
| TPH C6-C36 as C8 |     | nd    | nd    | 0.09 * | nd     | nd    | nd     |
| C6-C9            | 10  | nd    | nd    | 0.09 * | nd     | nd    | nd     |
| C10-C14          | 20  | nd    | nd    | nd     | nd     | nd    | nd     |
| C15-C28          | 100 | nd    | nd    | nd     | nd     | nd    | nd     |
| C29-C36          | 100 | nd    | nd    | nd     | nd     | nd    | nd     |
|                  |     |       |       |        |        |       |        |
|                  |     |       |       |        |        |       |        |
|                  |     |       |       |        |        |       |        |

\* Single Peak

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm)(O) Oils: mg/kg (ppm)

Reported values may be lower than the stated TPH PQL's if individual hydrocarbons are detected. PQL's for individual hydrocarbons are 1 ppm for soils and 0.01 ppm for water.





test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

#### TOTAL PETROLEUM HYDROCARBONS/BTEX (TPH/BTEX)

DowElanco (NZ) Ltd.

CONFIDENTIAL

CLIENT: GROUNDWATER TECHNOLOGY- NEW ZEALAND

REPORT No:

5S02034

SAMPLES:

11 x WATERS

PAGE:

5 OF 15

| SAMPLE I.D.      | PQL  | BH 34 | BH 37 | BH 28 | BH 36 | BH28B | Control |
|------------------|------|-------|-------|-------|-------|-------|---------|
| LAB I.D.         | -    | 10494 | 10495 | 10498 | 10499 | 10500 | СВ      |
| DEPTH (m)        | -    | •     | -     | -     | -     | -     | -       |
| MOISTURE (% w/w) | _    | -     | -     | -     | -     | -     | -       |
| TPH C6-C36 as C8 | -    | nd    | nd    | nd    | nd    | nd    | nd      |
| C6-C9            | 0.02 | nd    | nd    | nd    | nd    | nd    | nd      |
| C10-C14          | 0.04 | nd    | nd    | nd    | nd    | nd    | nd      |
| C15-C28          | 0.2  | nd    | nd    | nd    | nd    | nd    | nd      |
| C29-C36          | 0.2  | nd    | nd    | nd    | nd    | nd    | nd      |
|                  |      |       |       |       |       |       |         |
|                  |      |       |       |       |       |       |         |
|                  |      |       |       |       |       |       |         |

PQL = Practical Quantitation Limit

nd = Less than PQL = Not Applicable

(S) Soils:

mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm)

(O) Oils:

mg/kg (ppm)

Reported values may be lower than the stated TPH PQL's if individual hydrocarbons are detected. PQL's for individual hydrocarbons are 1 ppm for soils and 0.01 ppm for water.



DowElanco (N Z ) Ltd.

CONFIDENTIAL

5S02034

CLIENT: GROUNDWATER TECHNOLOGY NEW ZEALAND REPORT No:

SAMPLES: 15 x WATERS, N1034 PAGE: 6 OF 15

| SAMPLE I.D. | PQL - | BH 15    | TRIP  | FIELD       | BH 40 | BH 39     | BH39E            |
|-------------|-------|----------|-------|-------------|-------|-----------|------------------|
| LAB I.D.    | -     | 10486    | 10487 | 10488       | 10489 | 10490     | 10491            |
| METHANE     | 0.2   | nd       | nd    | nd          | nd    | nd        | nd               |
| ETHANE      | 0.4   | nd       | nd    | nd          | nd    | nd        | nd               |
| ETHENE      | 0.4   | nd       | nd    | nd          | nd    | nd        | nd               |
|             |       |          |       |             |       |           |                  |
|             |       |          |       |             |       |           |                  |
|             |       |          |       |             |       |           | dinessassas (10) |
|             |       |          |       |             |       |           |                  |
|             |       |          |       |             |       |           |                  |
|             |       |          |       |             |       |           |                  |
|             |       | - Ashang |       | 2010 ( SSS) |       | kwamani — |                  |
|             |       |          |       |             |       |           |                  |
|             |       |          |       |             |       |           |                  |
|             |       |          |       |             |       |           |                  |

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable B2

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm) (O) Oils: mg/kg (ppm)



CLIENT:

GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No:

5S02034

SAMPLES: DowElanco (N Z) Ltd.

15 x WATERS, N1034

PAGE:

7 OF 15

## CONFIDENTIAL

| SAMPLE I.D. | PQL - | BH 33 | BH 33S | BH 34               | BH 37 | TRIP<br>B | FIELD |
|-------------|-------|-------|--------|---------------------|-------|-----------|-------|
| LAB I.D.    | T     | 10492 | 10493  | 10494               | 10495 | 10496     | 10497 |
| METHANE     | 0.2   | nd    | nd     | nd                  | nd    | nd        | nd    |
| ETHANE      | 0.4   | nd    | nd     | nd                  | nd    | nd        | nd    |
| ETHENE      | 0.4   | nd    | nd     | nd                  | nd    | nd        | nd    |
|             |       |       |        |                     |       |           |       |
|             |       |       |        |                     |       |           |       |
|             |       |       |        |                     |       |           |       |
|             |       |       |        |                     |       |           |       |
|             |       | 100   |        |                     |       |           |       |
|             |       |       |        | A SECULAR SHIPLY OF |       |           |       |
|             |       |       |        |                     |       |           |       |
|             |       |       |        |                     |       |           |       |

PQL = Practical Quantitation Limit

nd = Less than PQL = Not Applicable

(S) Soils:

mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm)

(O) Oils:

mg/kg (ppm)



CLIENT:

GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No:

5S02034

SAMPLES:

15 x WATERS, N1034

PAGE:

8 OF 15

| SAMPLE I.D. | PQL - | BH 28 | BH 36 | BH 28B |  |                              |  |
|-------------|-------|-------|-------|--------|--|------------------------------|--|
| LAB I.D.    |       | 10498 | 10499 | 10500  |  |                              |  |
| LAD I.D.    |       | 10400 | 10400 | 10000  |  | $\top$                       |  |
| METHANE     | 0.2   | nd    | nd    | nd     |  |                              |  |
| ETHANE      | 0.4   | nd    | nd    | nd     |  |                              |  |
| ETHENE      | 0.4   | nd    | nd    | nd     |  |                              |  |
|             |       |       |       |        |  |                              |  |
|             |       |       |       |        |  |                              |  |
|             |       |       |       |        |  |                              |  |
|             |       |       |       |        |  | \$119.59\$ (\$19.000.000.000 |  |
|             |       |       |       |        |  |                              |  |
|             |       |       |       |        |  |                              |  |
|             |       |       |       |        |  |                              |  |
|             |       |       |       |        |  |                              |  |
|             |       |       |       |        |  | in a                         |  |
|             |       |       |       |        |  |                              |  |
|             |       |       |       |        |  |                              |  |
|             |       |       |       |        |  |                              |  |
|             |       |       |       |        |  |                              |  |

PQL = Practical Quantitation Limit

nd = Less than PQL = Not Applicable

mg/kg (ppm) dry weight (S) Soils:

(W) Waters: mg/l (ppm) (O) Oils:

mg/kg (ppm)





#### VOLATILE HALOGENATED COMPOUNDS (VHC)

CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No: 5S02034

SAMPLES: 15 x WATERS, N1034 PAGE: 9 OF 15

| SAMPLE I.D.  LAB I.D.  VINYL CHLORIDE  CHLOROETHANE  TRICHLOROFLUOROMETHANE  1,1-DICHLOROETHYLENE | 0.001 | BH 15<br>10486 | TRIP<br>10487 | FIELD<br>10488 | BH 40<br>10489 | BH 39 | BH 39B |
|---------------------------------------------------------------------------------------------------|-------|----------------|---------------|----------------|----------------|-------|--------|
| VINYL CHLORIDE<br>CHLOROETHANE<br>TRICHLOROFLUOROMETHANE                                          |       |                | 10487         | 10488          | 10490          |       |        |
| CHLOROETHANE<br>TRICHLOROFLUOROMETHANE                                                            |       |                |               |                | 10409          | 10490 | 10491  |
| CHLOROETHANE<br>TRICHLOROFLUOROMETHANE                                                            |       | nd             | nd            | nd             | nd             | nd    | nd     |
| TRICHLOROFLUOROMETHANE                                                                            |       | nd             | nd            | nd             | nd             | nd    | nd     |
|                                                                                                   | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| I Julii bii I bel ib ib ib yi b che                                                               | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| METHYLENE CHLORIDE                                                                                | 0.001 | 0.005          | 0.007         | 0.004          | 0.005          | 0.029 | 0.010  |
| rans-1,2-DICHLOROETHYLENE                                                                         | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| 1,1-DICHLOROETHANE                                                                                | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| sis-1,2-DICHLOROETHYLENE                                                                          | 0.001 | nd             | nd            | nd             | nd             | 0.004 | nd     |
| CHLOROFORM                                                                                        | 0.001 | nd             | 0.003         | 0.004          | 0.002          | 0.018 | 0.003  |
| 1,1,1-TRICHLOROETHANE                                                                             | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| CARBON TETRACHLORIDE                                                                              | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| ,2-DICHLOROETHANE                                                                                 | 0.001 | nd             | nd            | nd             | nd             | 0.080 | nd     |
| richloroethylene                                                                                  | 0.001 | 0.001          | nd            | nd             | 0.001          | 0.011 | nd     |
| ,2-DICHLOROPROPANE                                                                                | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| BROMODICHLOROMETHANE                                                                              | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| Frans-1,3-DICHLOROPROPENE                                                                         | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| cis-1,3-DICHLOROPROPENE                                                                           | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| ,1,2-TRICHLOROETHANE                                                                              | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| TETRACHLOROETHYLENE                                                                               | 0.001 | nd             | nd            | nd             | 0.001          | 0.001 | nd     |
| DIBROMOCHLOROMETHANE                                                                              | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| CHLOROBENZENE                                                                                     | 0.001 | nd             | nd            | nd             | nd             | 0.036 | nd     |
| BROMOFORM                                                                                         | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| ,1,2,2-TETRACHLOROETHANE                                                                          | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| ,3-DICHLOROBENZENE (m)                                                                            | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| 1,4-DICHLOROBENZENE (p)                                                                           | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |
| ,2-DICHLOROBENZENE (0)                                                                            | 0.001 | nd             | nd            | nd             | nd             | nd    | nd     |

PQL = Practical Quantitation Limit

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm)(O) Oils: mg/kg (ppm)

nd = Not Detected
- = Not Applicable





DowElanco (NZ) Ltd.

### CONFIDENTIAL

CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND

VOLATILE HALOGENATED COMPOUNDS (VHC)

**REPORT No: 5S02034** 

SAMPLES: 15 x WATERS, N1034

PAGE: 10 OF 15

| BH 33S | BH 34 | BH 37 | TRIP B   | FIELD B     |
|--------|-------|-------|----------|-------------|
| 10493  | 10494 | 10495 | 10496    | 10497       |
|        |       |       |          |             |
| nd     | nd    | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| 0.006  | 0.008 | nd    | 0.008    | 0.012       |
| nd     | nd    | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| 0.003  | 0.011 | nd    | 0.004    | 0.002       |
| nd     | 0.002 | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| nd     | 0.002 | nd    | nd       | nd          |
| 0.001  | 0.011 | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| nd     | 0.001 | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
| nd     | nd    | nd    | nd       | nd          |
|        | nd    | nd nd | nd nd nd | nd nd nd nd |

PQL = Practical Quantitation Limit

nd = Not Detected
- = Not Applicable

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm)(O) Oils: mg/kg (ppm)



DowElanco (NZ) Ltd. ONFIDENT



VOLATILE HALOGENATED COMPOUNDS (VHC)

CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No: 5S02034

PAGE: 11 OF 15 SAMPLES: 15 x WATERS, N1034

| SAMPLE I.D.                | PQL<br>- | BH 28 | BH 36 | BH 28B | Control<br>Blank |  |
|----------------------------|----------|-------|-------|--------|------------------|--|
| LAB I.D.                   |          | 10498 | 10499 | 10500  | СВ               |  |
|                            |          |       |       |        |                  |  |
| VINYL CHLORIDE             | 0.001    | nd    | nd    | nd     | nd               |  |
| CHLOROETHANE               | 0.001    | nd    | nd    | nd     | nd               |  |
| TRICHLOROFLUOROMETHANE     | 0.001    | nd    | nd    | nd     | nd               |  |
| 1,1-DICHLOROETHYLENE       | 0.001    | 0.002 | 0.002 | nd     | nd               |  |
| METHYLENE CHLORIDE         | 0.001    | 0.008 | 0.008 | 0.008  | nd               |  |
| trans-1,2-DICHLOROETHYLENE | 0.001    | nd    | nd    | nd     | nd               |  |
| 1,1-DICHLOROETHANE         | 0.001    | nd    | nd    | nd     | nd               |  |
| cis-1,2-DICHLOROETHYLENE   | 0.001    | nd    | nd    | nd     | nd               |  |
| CHLOROFORM                 | 0.001    | 0.001 | 0.005 | 0.005  | nd               |  |
| 1,1,1-TRICHLOROETHANE      | 0.001    | 0.003 | 0.006 | 0.015  | nd               |  |
| CARBON TETRACHLORIDE       | 0.001    | nd    | nd    | nd     | nd               |  |
| 1,2-DICHLOROETHANE         | 0.001    | nd    | 0.002 | nd     | nd               |  |
| TRICHLOROETHYLENE          | 0.001    | nd    | 0.003 | nd     | nd               |  |
| 1,2-DICHLOROPROPANE        | 0.001    | nd    | nd    | nd     | nd               |  |
| BROMODICHLOROMETHANE       | 0.001    | nd    | nd    | nd     | nd               |  |
| Trans-1,3-DICHLOROPROPENE  | 0.001    | nd    | nd    | nd     | nd               |  |
| cis-1,3-DICHLOROPROPENE    | 0.001    | nd    | nd    | nd     | nd               |  |
| 1,1,2-TRICHLOROETHANE      | 0.001    | nd    | nd    | nd     | nd               |  |
| TETRACHLOROETHYLENE        | 0.001    | nd    | nd    | nd     | nd               |  |
| DIBROMOCHLOROMETHANE       | 0.001    | nd    | nd    | 0.001  | nd               |  |
| CHLOROBENZENE              | 0.001    | nd    | nd    | nd     | nd               |  |
| BROMOFORM                  | 0.001    | nd    | nd    | nd     | nd               |  |
| 1,1,2,2-TETRACHLOROETHANE  | 0.001    | nd    | nd    | nd     | nd               |  |
| 1,3-DICHLOROBENZENE (m)    | 0.001    | nd    | nd    | nd     | nd               |  |
| 1,4-DICHLOROBENZENE (p)    | 0.001    | nd    | nd    | nd     | nd               |  |
| 1,2-DICHLOROBENZENE (o)    | 0.001    | nd    | nd    | nd     | nd               |  |
|                            |          |       |       |        |                  |  |

PQL = Practical Quantitation Limit

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm) (O) Oils: mg/kg (ppm) nd = Not Detected - = Not Applicable





CLIENT:

GROUNDWATER TECHNOLOGY - NEW ZEALAND

REPORT No:

5S02034

SAMPLES: 9 x WATERS, N1034

PAGE:

12 OF 15

METHOD REFERENCE: APHA 18th Ed. (Unless otherwise specified)

DowElanco (NZ) Ltd. CONFIDENTIAL

| SAMPLE I.D.            | AAL<br>meth. Ref. | PQL | UNITS | BH15          | Trip  | Field | BH40  | BH39  |
|------------------------|-------------------|-----|-------|---------------|-------|-------|-------|-------|
| LAB I.D.               | -                 |     |       | 10486         | 10487 | 10488 | 10489 | 10490 |
| BOD (5)                | W026              | 5   | mg/L  | nd            | •     | •     | nd    | nd    |
| BOD (20) *             | W026              | 5   | mg/L  | 7             |       | -     | 26    | 103   |
| pH                     | W031              | 5   | -     | 6.8           | -     | -     | 6.7   | 6.4   |
| CONDUCTIVITY           | W032              | -   | uS/cm | 530           | -     | -     | 564   | 480   |
| TOTAL DISSOLVED SOLIDS | W033              | 2   | mg/L  | 258           |       | -     | 277   | 308   |
| CHEMICAL OXYGEN DEMAND | W038.1            | 2   | mg/L  | nd            |       | -     | nd    | 28    |
| TOTAL ORGANIC CARBON   | W048 **           | 25  | mg/L  | 2             | -     | -     | 2     | 2     |
|                        |                   |     |       |               |       |       |       |       |
|                        |                   |     |       | upa sa ang    | NG:   | 20000 |       |       |
|                        |                   |     |       |               |       |       |       |       |
|                        |                   |     |       | How the state |       |       |       |       |
|                        |                   |     |       |               |       |       |       |       |
|                        |                   |     |       |               |       |       |       | E     |

\* BOD (20) is not a registered Nata Test.

PQL = Practical Quantitation Limit

nd = Less than PQL

\*\* = USEPA 9060 (Mod.)





**GROUNDWATER TECHNOLOGY - NEW ZEALAND** CLIENT:

REPORT No:

5S02034

SAMPLES: 9 x WATERS, N1034

PAGE:

13 OF 15

METHOD REFERENCE: APHA 18th Ed. (Unless otherwise specified)

| SAMPLE I.D.            | AAL meth. Ref. | PQL<br>- | UNITS<br>- | внз9в       | внзз  | BH33S | BH34  | BH37  |
|------------------------|----------------|----------|------------|-------------|-------|-------|-------|-------|
| LAB I.D.               | -              | -        |            | 10491       | 10492 | 10493 | 10494 | 10495 |
| BOD (5)                | W026           | 5        | mg/L       | nd          | nd    | nd    | 15    | nd    |
| BOD (20) *             | W026           | 5        | mg/L       | 6           | 6     | 21    | 51    | 16    |
| рН                     | W031           |          | -          | 6.5         | 6.2   | 6.2   | 6.4   | 5.8   |
| CONDUCTIVITY           | W032           | 2        | uS/cm      | 4           | 420   | 385   | 678   | 423   |
| TOTAL DISSOLVED SOLIDS | W033           | 2        | mg/L       | nd          | 270   | 247   | 316   | 263   |
| CHEMICAL OXYGEN DEMAND | W038.1         | 25       | mg/L       | nd          | 170   | 75    | nd    | nd    |
| TOTAL ORGANIC CARBON   | W048 **        | 1        | mg/L       | nd          | 6     | 4     | 14    | nd    |
|                        |                |          |            |             |       |       |       |       |
|                        |                |          |            | 1=457       |       |       |       |       |
|                        |                |          |            |             |       |       |       |       |
|                        |                |          |            |             |       |       |       |       |
|                        |                |          |            |             |       |       |       |       |
|                        |                |          |            |             |       |       |       |       |
|                        |                |          |            | No. Charles |       |       |       |       |
|                        |                |          |            |             |       |       |       |       |
|                        |                |          |            |             |       |       |       |       |
|                        | 1              |          |            |             |       |       |       | F     |

\* BOD (20) is not a registered Nata test.

PQL = Practical Quantitation Limit

= Less than PQL

\*\* = USEPA 9060 (Mod.)





CLIENT:

GROUNDWATER TECHNOLOGY - NEW ZEALAND

REPORT No:

5S02034

SAMPLES: 9 x WATERS, N1034

PAGE: 14 OF 15

METHOD REFERENCE: APHA 18th Ed. (Unless otherwise specified)

DowElanco (NZ) Ltd.

## CONFIDENTIAL

|                        | AAL        | PQL | UNITS |       |         | PLICE | DUIGO | DUIDED |
|------------------------|------------|-----|-------|-------|---------|-------|-------|--------|
| SAMPLE I.D.            | meth. Ref. | -   | -     |       | FIELD B | BH28  | BH36  | BH28B  |
| LAB I.D.               | -          | -   |       | 10496 | 10497   | 10498 | 10499 | 10500  |
| BOD (5)                | W026       | 5   | mg/L  | -     | -       | nd    | nd    | nd     |
| BOD (20) *             | W026       | 5   | mg/L  | -     | -       | 10    | nd    | nd     |
| pH                     | W031       | -   | -     | -     | -       | 6.4   | 6.4   | 6.2    |
| CONDUCTIVITY           | W032       | 2   | uS/cm | -     | -       | 552   | 602   | 3      |
| TOTAL DISSOLVED SOLIDS | W033       | 2   | mg/L  |       |         | 240   | 324   | nd     |
| CHEMICAL OXYGEN DEMAND | W038.1     | 25  | mg/L  | -     | -       | nd    | nd    | nd     |
| TOTAL ORGANIC CARBON   | W048 **    | 1   | mg/L  |       | -       | nd    | 3     | nd     |
|                        |            |     |       |       |         |       |       |        |
|                        |            |     |       |       |         |       |       |        |
|                        |            |     |       |       |         |       |       |        |
|                        |            |     |       |       |         |       |       |        |
|                        |            |     |       |       |         |       |       |        |
|                        |            |     |       |       |         |       |       |        |
|                        |            |     |       |       |         |       |       |        |
|                        |            |     |       |       |         |       |       |        |
|                        |            |     |       |       |         |       |       | В      |

<sup>\*</sup> BOD (20) is not a registered Nata Test.

PQL = Practical Quantitation Limit

\*\* = USEPA 9060 (Mod.)

nd = Less than PQL





5S02034 REPORT No: **GROUNDWATER TECHNOLOGY - NEW ZEALAND** CLIENT:

15 OF 15 PAGE: SAMPLES: WATERS

METHOD REFERENCE: APHA 18th Ed. (Unless otherwise specified)

DowElanco (NZ) Ltd.

## CONFIDENTIAL

| 026<br>026<br>031<br>032<br>033<br>38.1 | 5 5 - 2 2 2 | mg/L<br>mg/L<br>-<br>uS/cm<br>mg/L | nd nd - nd |     |       |
|-----------------------------------------|-------------|------------------------------------|------------|-----|-------|
| 026<br>031<br>032<br>033                | 2 2         | mg/L<br>-<br>uS/cm                 | nd<br>-    |     | 1 98% |
| )31<br>)32<br>)33                       | 2           | uS/cm                              | -          |     |       |
| 32                                      | 2           |                                    |            |     |       |
| )33                                     | 2           |                                    | nd         | -3. |       |
|                                         |             | ma/L                               |            |     |       |
| 38.1                                    |             |                                    | nd         |     |       |
| 200000000000000000000000000000000000000 | 25          | mg/L                               | nd         |     |       |
| 18 **                                   | 1           | mg/L                               | nd         |     |       |
|                                         |             |                                    |            |     |       |
|                                         |             |                                    |            |     |       |
|                                         |             |                                    |            |     |       |
|                                         |             |                                    |            |     |       |
|                                         |             |                                    |            |     |       |
|                                         |             |                                    |            |     |       |

\* BOD (20) is not a registered Nata Test

PQL = Practical Quantitation Limit

\*\* = USEPA 9060 (Mod.)

= Less than PQL

= Not Applicable

**B2** 



DowElanco (NZ) Ltd. CONFIDENTIAL

## OA/QC APPENDIX No. 5S02034

| ANALYTE                                       | No. of Pages. |
|-----------------------------------------------|---------------|
| Organochlorine Pesticides/PCB's               | 3             |
| Total Petroleum Hydrocarbons                  | 2             |
| GC/MS Volatiles                               | 2             |
| Volatile Halogenated Carbons                  | 4             |
| Nutrients                                     | 2             |
| TOTAL No. of PAGES                            | 13            |
| Other Criteria: (except Inorganics/Nutrients) |               |

Signed:

R.G. MOONEY B.Sc.(Hons), Dip.F.D.A., M.R.A.C.I.

Within Acceptance Criteria Within Acceptance Criteria

Within 15%

**Authorising Chemist** 

Retention Time Window

Check Standard

Recalibration



LABORATORY DUPLICATE - QA/QC REPORT CLIENT: GROUNDWATER- NEW ZEALAND

REPORT No:

5S02054

SAMPLES: 15 x WATERS, N1034

PAGE: 1 OF 2

DowElanco (NZ) Ltd.

CONFIDENTIAL

| SAMPLE I.D. | UNITS - | PQL | TRIP B   | TRIP B Duplicate | Average   | RPD % | Comments |
|-------------|---------|-----|----------|------------------|-----------|-------|----------|
| LAB I.D.    | -       |     | 10496    | 10496            |           |       |          |
| METHANE     | mg/L    | 0.2 | nd       | nd               | nd        | •     |          |
| ETHANE      | mg/L    | 0.4 | nd       | nd               | nd        | -     | SHIM     |
| ETHENE      | mg/L    | 0.4 | nd       | nd               | nd        | -     |          |
|             |         |     |          |                  |           |       |          |
|             |         |     | e (VIII) |                  | i anno la |       |          |
|             |         |     |          |                  |           |       |          |
|             |         |     |          |                  |           |       |          |
|             |         |     |          |                  |           |       |          |
|             |         |     |          |                  |           |       |          |
|             |         |     |          |                  |           |       |          |
|             |         |     |          |                  |           |       |          |

PQL = Practical Quantitation Limit

nd = Less than PQL = Not Applicable

RPD = Relative Percent Difference

QA/QC data within acceptance criteria



CLIENT:

GROUNDWATER TECHNOLOGY

REPORT No:

5S02034

SAMPLES: 15 x WATERS, N1034

PAGE: 2 OF 2

DowElanco (NZ) Ltd.

## CONFIDENTIAL

| SAMPLE I.D. | UNITS - | PQL | BH 28 | BH 28<br>Duplicate | Average | RPD % | Comments |
|-------------|---------|-----|-------|--------------------|---------|-------|----------|
| LAB I.D.    | -       |     | 10498 | 10498              |         |       |          |
| METHANE     | mg/L    | 0.2 | nd    | nd                 | nd      |       |          |
| ETHANE      | mg/L    | 0.4 | nd    | nd                 | nd      | -     |          |
| ETHENE      | mg/L    | 0.4 | nd    | nd                 | nd      | -     |          |
|             |         |     |       |                    |         |       |          |
|             |         |     |       |                    |         |       |          |
|             |         |     |       |                    |         |       |          |
|             |         |     |       |                    |         |       |          |
|             |         |     |       |                    |         |       | 100      |
|             |         |     |       |                    |         | ,     |          |
|             |         |     |       |                    |         |       |          |
|             |         |     |       |                    |         |       |          |
|             |         |     |       |                    |         |       |          |

PQL = Practical Quantitation Limit

nd = Less than PQL

= Not Applicable

RPD = Relative Percent Difference

QA/QC data within acceptance criteria



CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALANE REPORT No: 5S02034

SAMPLES: 15 x WATERS, N1034

PAGE: 1 OF 2

DowElanco (NZ) Ltd.

## CONFIDENTIAL

| SAMPLE I.D.            | UNITS - | PQL | 33    | Duplicate | Average | RPD % | Comments |
|------------------------|---------|-----|-------|-----------|---------|-------|----------|
| LAB I.D.               | -       |     | 10492 | 10492     |         |       | 1000     |
| CHEMICAL OXYGEN DEMAND | mg/L    | 25  | 160   | 180       | 170     | 12    |          |
| BOD (5)                | mg/L    | 5   | nd    | nd        | nd      | -     |          |
| pH                     | -       | -   | 6.2   | 6.2       | 6.2     | 0     |          |
| CONDUCTIVITY           | uS/cm   | 2   | 421   | 420       | 420.5   | <1    |          |
| TOTAL DISSOLVED SOLIDS | mg/L    | 5   | 170   | 269       | 269.5   | <1    |          |
| BOD (20)               | mg/L    | 5   | 6     | 7         | 6.5     | 15    | Turi-    |
|                        |         |     |       |           |         |       |          |

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

RPD = Relative Percent Difference

QA/QC data within acceptance criteria



MATRIX SPIKE/CHECK SOLUTIONS - QA/QC REPORT
CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND

REPORT No:

5S02034

SAMPLES: 15 x WATERS, N1034

PAGE:

2 OF 2

DowElanco (NZ) Ltd.

CONFIDENTIAL

| ANALYTE                             | UNITS         | PQL<br>- | Matrix Spike/<br>Check<br>Solution | Results    | Acceptance<br>Limits         | Comments        |
|-------------------------------------|---------------|----------|------------------------------------|------------|------------------------------|-----------------|
|                                     |               |          | 400                                | 405        | . 400                        |                 |
| TOTAL ORGANIC CARBON                | mg/L          | 1<br>5   | 100<br>200                         | 105<br>240 | ± 10%<br>± 20%               | Suesa Suritoria |
| BOD (5)                             | mg/L          |          |                                    | 7.5        | ± 0.2                        |                 |
| pH                                  | -0/           | -        | 7.4                                |            |                              |                 |
| CONDUCTIVITY TOTAL DISSOLVED SOLIDS | uS/cm<br>mg/L | 2        | 303<br>293                         | 305<br>273 | <u>+</u> 10%<br><u>+</u> 10% |                 |
|                                     |               |          |                                    |            |                              |                 |
|                                     |               |          |                                    |            |                              |                 |
|                                     |               |          |                                    |            |                              |                 |
|                                     |               |          |                                    |            |                              |                 |

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

QA/QC data within acceptable criteria

# DowElanco (NZ) Ltd. CONFIDENTIAL

#### **Australian Analytical Laboratories**

OC's "A" - Matrix Spike/Duplicate

Reference No:

102011a1

Matrix ID:

mb (water)

Page:

1 of 3

|                | Spike          | Level            | Detected         |              | Recovery     | Details        |            |
|----------------|----------------|------------------|------------------|--------------|--------------|----------------|------------|
| Analyte        | Level<br>(ppm) | Spike 1<br>(ppm) | Spike 2<br>(ppm) | Rec 1<br>(%) | Rec 2<br>(%) | Average<br>(%) | RPD<br>(%) |
| HCB            | 0.05           | 0.05             | 0.05             | 100%         | 98%          | 99%            | 1%         |
| alpha- BHC     | 0.05           | 0.05             | 0.05             | 97%          | 96%          | 97%            | 1%         |
| Lindane        | 0.05           | 0.05             | 0.05             | 99%          | 98%          | 98%            | 1%         |
| Heptachlor     | 0.05           | 0.05             | 0.05             | 99%          | 97%          | 98%            | 1%         |
| Aldrin         | 0.05           | 0.05             | 0.05             | 99%          | 98%          | 98%            | 1%         |
| beta- BHC      | 0.05           | 0.05             | 0.05             | 97%          | 105%         | 101%           | 8%         |
| Oxychlordane   | 0.05           | 0.05             | 0.05             | 99%          | 98%          | 98%            | 1%         |
| Hept.Epoxide   | 0.05           | 0.05             | 0.05             | 98%          | 98%          | 98%            | 1%         |
| o,p'-DDE       | 0.05           | 0.05             | 0.05             | 99%          | 97%          | 98%            | 2%         |
| Tech.Chlordane | 0.15           | 0.15             | 0.15             | 99%          | 98%          | 99%            | 1%         |
| p,p'-DDE       | 0.05           | 0.05             | 0.05             | 99%          | 98%          | 98%            | 1%         |
| Dieldrin       | 0.05           | 0.05             | 0.05             | 100%         | 100%         | 100%           | 0%         |
| Endrin         | 0.05           | 0.05             | 0.05             | 100%         | 99%          | 100%           | 1%         |
| o,p'-DDD       | 0.05           | 0.05             | 0.05             | 100%         | 99%          | 100%           | 1%         |
| p,p'-DDD       | 0.05           | 0.04             | 0.05             | 90%          | 103%         | 97%            | 14%        |
| p,p'-DDT       | 0.05           | 0.05             | 0.05             | 98%          | 97%          | 97%            | 2%         |
| Methoxychlor   | 0.05           | 0.04             | 0.04             | 84%          | 84%          | 84%            | 0%         |

Spike Units: mg/l

ppm

nd = Not Detected

= Not Applicable

MB = Matrix Blank

All results are within the acceptance criteria

Water samples

%Recoveries within 70 - 130%

%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%Recoveries within 70 - 130%

%RPD < 50% for low level (<10xPQL)

DowElanco (N Z) Ltd.

CONFIDENTIAL

#### **Australian Analytical Laboratories**

OC's "A" - Sample Duplicates

Reference No:

102011a1

Matrix Id:

Water - 10492

Page:

2 of 3

| Analyte        | PQL   | Conc 1 | Conc 2 | Average | RPD<br>(%) |
|----------------|-------|--------|--------|---------|------------|
| HCB            | 0.001 | ND     | ND     | ND      | •          |
| alpha- BHC     | 0.001 | ND     | ND     | ND      |            |
| Lindane        | 0.001 | ND     | ND     | ND      |            |
| Heptachlor     | 0.001 | ND     | ND     | ND      |            |
| Aldrin         | 0.001 | ND     | ND     | ND      | -          |
| beta- BHC      | 0.001 | ND     | ND     | ND      |            |
| Oxychlordane   | 0.001 | ND     | ND     | ND      | -          |
| Hept.Epoxide   | 0.001 | ND     | ND     | ND      |            |
| o,p'-DDE       | 0.001 | ND     | ND     | ND      | -          |
| Tech.Chlordane | 0.003 | ND     | ND     | ND      |            |
| p,p'-DDE       | 0.001 | ND     | ND     | ND      | -          |
| Dieldrin       | 0.001 | ND     | ND     | ND      | -          |
| Endrin         | 0.001 | ND     | ND     | ND      |            |
| o,p'-DDD       | 0.001 | ND     | ND     | ND      |            |
| o,p'-DDT       | 0.001 | ND     | ND     | ND      |            |
| p,p'-DDD       | 0.001 | ND     | ND     | ND      | and the    |
| p,p'-DDT       | 0.001 | ND     | ND     | ND      |            |
| Methoxychlor   | 0.001 | ND     | ND     | ND      |            |

Units:

mg/l (ppm)

nd = Not Detected

- = Not Applicable

\* = Indeterminate Value

All results are within the acceptance criteria

Water samples

%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%RPD < 50% for low level (<10xPQL)



OC's "B" - Sample Duplicates

Reference No:

102011a1

Matrix Id:

Water - 10492

Page:

3 of 3

| Analyte       | PQL   | Conc 1 | Conc 2 | Average | RPD<br>(%) |
|---------------|-------|--------|--------|---------|------------|
| delta - BHC   | 0.001 | ND     | ND     | ND      | -          |
| a-Endosulfan  | 0.001 | ND     | ND     | ND      |            |
| b-Endosulfan  | 0.001 | ND     | ND     | ND      | -          |
| End. Sulphate | 0.001 | ND     | ND     | ND      | -          |

Units:

mg/l (ppm)

nd = Not Detected

- = Not Applicable

\* = Indeterminate Value

All results are within the acceptance criteria

Water samples

%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%RPD < 50% for low level (<10xPQL)



TPH - Matrix Spike/Duplicate

Reference No:

102801h1

Matrix ID:

mb - water

Page:

1 of 2

|             | Spike          | Level            | Detected         |           | Recovery     | Details        |            |
|-------------|----------------|------------------|------------------|-----------|--------------|----------------|------------|
| Analyte     | Level<br>(ppm) | Spike 1<br>(ppm) | Spike 2<br>(ppm) | Rec 1 (%) | Rec 2<br>(%) | Average<br>(%) | RPD<br>(%) |
| TPH C20-C28 | 5.00           | 5.56             | 4.57             | 111%      | 91%          | 101%           | 20%        |
| C8          | 0.50           | 0.53             | 0.50             | 106%      | 100%         | 103%           | 6%         |

Spike Units:

mg/L

nd = Not Detected

- = Not Applicable

MB = Matrix Blank

All results are within the acceptance criteria

Water samples

%Recoveries within 70 - 130%

%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%Recoveries within 70 - 130%

%RPD < 50% for low level (<10xPQL)



**TPH - Sample Duplicates** 

Reference No:

102801H1

Matrix Id:

10492

Page:

2 of 2

| Analyte      | PQL  | Conc 1 | Conc 2 | Average | RPD<br>(%) |
|--------------|------|--------|--------|---------|------------|
| TPH C6 - C36 | - 1  | ND     | ND     | ND      | -          |
| C6 - C9      | 0.02 | ND     | ND     | ND      |            |
| C10 - C14    | 0.04 | ND     | ND     | ND      | -          |
| C15 - C28    | 0.2  | ND     | ND     | ND      | -          |
| C29 - C36    | 0.2  | ND     | ND     | ND      | -          |

Units:

mg/L (ppm)

nd = Not Detected

- = Not Applicable

\* = Indeterminate Value

All results are within QA/QC acceptance criteria:

Water samples

%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%RPD < 50% for low level (<10xPQL)

## DowElanco (N Z) Ltd. CONFIDENTIAL

#### **Australian Analytical Laboratories**

HC's "A" - Matrix Spike/Duplicate

eference No:

103004d1

atrix ID:

mb

Page:

1 of 4

|                            | Spike          | Level            | Detected         |           | Recovery     | Details        |            |
|----------------------------|----------------|------------------|------------------|-----------|--------------|----------------|------------|
| Analyte                    | Level<br>(ppm) | Spike 1<br>(ppm) | Spike 2<br>(ppm) | Rec 1 (%) | Rec 2<br>(%) | Average<br>(%) | RPD<br>(%) |
| inyl Chloride              | 0.008          | 0.0087           | 0.0091           | 108%      | 113%         | 111%           | 5%         |
| hloroethane                | 0.002          | 0.0023           | 0.0023           | 115%      | 117%         | 116%           | 1%         |
| Trichorofluoromethane      | 0.002          | 0.0019           | 0.0020           | 93%       | 102%         | 97%            | 10%        |
| ,1-Dichloroethylene        | 0.002          | 0.0018           | 0.0021           | 90%       | 105%         | 98%            | 15%        |
| 1ethylene Chloride         | 0.002          | 0.0023           | 0.0020           | 114%      | 101%         | 108%           | 12%        |
| trans-1,2-Dichloroethylene | 0.002          | 0.0023           | 0.0020           | 114%      | 101%         | 107%           | 13%        |
| ,1-Dichloroethane          | 0.002          | 0.0021           | 0.0021           | 107%      | 103%         | 105%           | 4%         |
| hloroform                  | 0.002          | 0.0024           | 0.0024           | 121%      | 121%         | 121%           | 1%         |
| 1,1,1-Trichloroethane      | 0.002          | 0.0023           | 0.0024           | 115%      | 118%         | 116%           | 3%         |
| arbon Tetrachloride        | 0.002          | 0.0022           | 0.0021           | 111%      | 106%         | 108%           | 5%         |
| ,2-Dichloroethane          | 0.002          | 0.0026           | 0.0022           | 128%      | 110%         | 119%           | 15%        |
| Trichloroethylene          | 0.002          | 0.0026           | 0.0024           | 128%      | 118%         | 123%           | 8%         |
| 1,2-Dichloropropane        | 0.002          | 0.0021           | 0.0022           | 106%      | 108%         | 107%           | 2%         |
| romodichloromethane        | 0.002          | 0.0020           | 0.0022           | 100%      | 109%         | 104%           | 8%         |
| trans-1,3-Dichloropropene  | 0.002          | 0.0023           | 0.0019           | 116%      | 96%          | 106%           | 19%        |
| 1,1,2-Trichloroethane      | 0.002          | 0.0018           | 0.0021           | 92%       | 106%         | 99%            | 14%        |
| etrachloroethylene         | 0.002          | 0.0020           | 0.0021           | 101%      | 107%         | 104%           | 6%         |
| Dibromochloromethane       | 0.002          | 0.0021           | 0.0023           | 103%      | 114%         | 109%           | 11%        |

Spike Units:

mg/L (ppm)

nd = Not Detected

- = Not Applicable

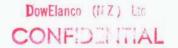
MB = Matrix Blank

All results are within the acceptance criteria

Water samples

%Recoveries within 70 - 130%

%RPD < 40% for low level (<10xPQL)


< 20% for high level (>10xPQL)

Soil samples

%Recoveries within 70 - 130%

%RPD < 50% for low level (<10xPQL)





VHC's "B" - Matrix Spike/Duplicate

Reference No:

103004d1

Matrix ID:

mb

Page:

2 of 4

|                             | Spike          | Level            | Detected         | 10000000     | Recovery     | Details        |            |
|-----------------------------|----------------|------------------|------------------|--------------|--------------|----------------|------------|
| Analyte                     | Level<br>(ppm) | Spike 1<br>(ppm) | Spike 2<br>(ppm) | Rec 1<br>(%) | Rec 2<br>(%) | Average<br>(%) | RPD<br>(%) |
| Chlorobenzene               | 0.002          | 0.0020           | 0.0019           | 98%          | 97%          | 98%            | 2%         |
| Bromoform                   | 0.002          | 0.0020           | 0.0020           | 98%          | 102%         | 100%           | 3%         |
| 1,1,2,2 - Tetrachloroethane | 0.002          | 0.0022           | 0.0021           | 112%         | 106%         | 109%           | 6%         |
| 1,3 - Dichlorobenzene       | 0.002          | 0.0022           | 0.0019           | 108%         | 93%          | 101%           | 15%        |
| 1,4 - Dichlorobenzene       | 0.002          | 0.0021           | 0.0021           | 105%         | 103%         | 104%           | 2%         |
| 1,2 - Dichlorobenzene       | 0.002          | 0.0025           | 0.0023           | 123%         | 117%         | 120%           | 5%         |

Spike Units:

mg/L (ppm)

nd = Not Detected

- = Not Applicable

MB = Matrix Blank

All results are within the acceptance criteria

Water samples

%Recoveries within 70 - 130%

%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%Recoveries within 70 - 130%

%RPD < 50% for low level (<10xPQL)



VHC's "A" - Sample Duplicates

Reference No: Matrix Id: 103004d1 Water - 10492 Page:

3 of 4

| Analyte                    | PQL   | Conc 1 | Conc 2 | Average | RPD<br>(%) |
|----------------------------|-------|--------|--------|---------|------------|
| Vinyl Chloride             | 0.001 | ND     | ND     | ND      | -          |
| Chloroethane               | 0.001 | ND     | ND     | ND      | -          |
| Trichorofluoromethane      | 0.001 | ND     | ND     | ND      | -          |
| 1,1-Dichloroethylene       | 0.001 | ND     | ND     | ND      |            |
| Methylene Chloride         | 0.001 | 0.003  | 0.004  | 0.004   | 29%        |
| trans-1,2-Dichloroethylene | 0.001 | ND     | ND     | ND      | -          |
| 1,1-Dichloroethane         | 0.001 | ND     | ND     | ND      | -          |
| cis-1,2-Dichloroethylene   | 0.001 | ND     | ND     | ND      |            |
| Chloroform                 | 0.001 | 0.004  | 0.004  | 0.004   | 0%         |
| 1,1,1-Trichloroethane      | 0.001 | ND     | ND     | ND      | -          |
| Carbon Tetrachloride       | 0.001 | ND     | ND     | ND      | -          |
| 1,2-Dichloroethane         | 0.001 | ND     | ND     | ND      | -          |
| Trichloroethylene          | 0.001 | 0.001  | 0.001  | 0.001   | 0%         |
| 1,2-Dichloropropane        | 0.001 | ND     | ND     | ND      | -          |
| Bromodichloromethane       | 0.001 | ND     | ND     | ND      | -          |
| trans-1,3-Dichloropropene  | 0.001 | ND     | ND     | ND      |            |
| cis-1,3-Dichloropropene    | 0.001 | ND     | ND     | ND      | -          |
| 1,1,2-Trichloroethane      | 0.001 | ND     | ND     | ND      |            |
| Tetrachloroethylene        | 0.001 | ND     | ND     | ND      | -          |
| Dibromochloromethane       | 0.001 | ND     | ND     | ND      | -          |

Units:

mg/L (ppm)

nd = Not Detected

- = Not Applicable

\* = Indeterminate Value

All results are within the acceptance criteria

Water samples

%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%RPD < 50% for low level (<10xPQL)



VHC's "B" - Sample Duplicates

Reference No:

103004d1

Matrix Id:

Water - 10492

Page:

4 of 4

| Analyte                   | PQL   | Conc 1 | Conc 2 | Average | RPD<br>(%) |
|---------------------------|-------|--------|--------|---------|------------|
| Chlorobenzene             | 0.001 | ND     | ND     | ND      | 70.5       |
| Bromoform                 | 0.001 | ND     | ND     | ND      |            |
| 1,1,2,2-Tetrachloroethane | 0.001 | ND     | ND     | ND      | -          |
| 1,3 - Dichlorobenzene     | 0.001 | ND     | ND     | ND      | -          |
| 1,4 - Dichlorobenzene     | 0.001 | ND     | ND     | ND      | -          |
| 1,2 - Dichlorobenzene     | 0.001 | ND     | ND     | ND      | -          |

Units:

mg/L (ppm)

nd = Not Detected

- = Not Applicable

\* = Indeterminate Value

All results are within the acceptance criteria

Water samples

%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%RPD < 50% for low level (<10xPQL)





Registered No. 1464

DowElanco (NZ) Ltd.

### CONFIDENTIAL

#### INDUSTRIAL AND ENVIRONMENTAL SERVICES DIVISION

Trading as Australian Analytical Laboratories Pty Ltd

A.C.N. 001 491 667

5 Kelray Place

Correspondence to:

ASQUITH NSW 2077

P.O. Box 514

Telephone: (02) 482 1922

HORNSBY NSW 2077

Facsimile: (02) 482 1734

#### **CERTIFICATE OF ANALYSIS**

DATE:

24/11/95

REPORT No: 5S02492

Page: 1 of 7 QA/QC Appendix

CLIENT:

Groundwater Technology - New Zealand

SAMPLES:

5 x Waters

REFERENCE:

N1034 Dow Elanco

LAB Nos.:

12339 - 12343

DATE RECEIVED:

7/11/95

DATE COMMENCED:

9/11/95

| TEST:                     | METHOD: |
|---------------------------|---------|
| Organochlorine Pesticides | E011    |
|                           |         |

1. 2. Total Petroleum Hydrocarbons E081 3. Volatile Halogenated Carbons E042 M11/1 \* 4. Methane, Ethane, Ethene 5. Metals E310/E330 Arsenic E311 6.

7. Mecury

E312

8. Inorganics/Nutrients APHA 18th Ed.

(Please see results sheet for individual

method numbers.)

RESULTS:

All samples analysed as received.

This report replaces preliminary results issued on 10/11/95, 20/11/95, 21/11/95,

22/11/95, 23/11/95, 24/11/95

\* Amdel-Sydney is not Nata registered for Methane, Ethane, Ethene.

Please see attached pages for results

2 (Musica)

R.G. MOONEY B.Sc. (Hons), Dip.F.D.A., M.R.A.C.I. **Authorising Chemist** 





ORGANOCHLORINE PESTICIDES / PCBs (OC/PCB) (PCB 1016,1221,1232,1242,1248,1254,1260)

CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No: 5S02492

DowElanco (NZ) Ltd.

SAMPLES: 4 x WATERS, N1034

2 OF 7 CONFIDENTIAL PAGE:

|                      | PQL   | вн    | ВН             | ВН    |       | Control |                                                                                                                |
|----------------------|-------|-------|----------------|-------|-------|---------|----------------------------------------------------------------------------------------------------------------|
| SAMPLE I.D.          | -     | 39K   | 39JB           | 39J   | BH2   | Blank   |                                                                                                                |
| LAB I.D.             | -     | 12339 | 12340          | 12341 | 12342 | СВ      |                                                                                                                |
|                      |       |       | Alumina in the |       |       |         |                                                                                                                |
| H.C.B.               | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| α-BHC                | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| LINDANE              | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| HEPTACHLOR           | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| ALDRIN               | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| β-внс                | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| δ-ВНС                | 0.001 | nd    | nd             | nd    | nd    | nd      | ***************************************                                                                        |
| OXYCHLORDANE         | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| HEPTACHLOR EPOXIDE   | 0.001 | nd    | nd             | nd    | nd    | nd      | ANA MATANA M |
| α-ENDOSULFAN         | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| γ-CHLORDANE          | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| α-CHLORDANE          | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| trans- NONACHLOR     | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| TOTAL DDE's          | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| DIELDRIN             | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| ENDRIN               | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| TOTAL DDD's          | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| β-ENDOSULPHAN        | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| TOTAL DDT's          | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| ENDOSULPHAN SULPHATE | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| METHOXYCHLOR         | 0.001 | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| PCB's                | 0.01  | nd    | nd             | nd    | nd    | nd      |                                                                                                                |
| PCB IDENTIFICATION   | -     | -     | -              | _     | -     | -       |                                                                                                                |
| SURROGATE % RECOVERY |       | 98    | 81             | 79    | 93    |         |                                                                                                                |

PQL = Practical Quantitation Limit

nd = Less than PQL = Not Applicable

(W) Water: mg/l (ppm)





#### TOTAL PETROLEUM HYDROCARBONS/BTEX (TPH/BTEX)

DowElanco (NZ) Ltd.

CONFIDENTIAL

CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No: 5S02492

SAMPLES: 4 x WATERS, N1034 PAGE: 3 OF 7

| SAMPLE I.D.      | PQL<br>- | BH<br>39K | BH<br>39JB | BH<br>39J | BH<br>2 | Control<br>Blank |  |
|------------------|----------|-----------|------------|-----------|---------|------------------|--|
| LAB I.D.         | -        | 12339     | 12340      | 12341     | 12342   | СВ               |  |
| DEPTH (m)        | -        | *         |            | -         | -       | -                |  |
| MOISTURE (% w/w) |          | -         | -          | -         | -       | _                |  |
| TPH C6-C36 as C8 |          | 7.50      | 1.6        | 13.5      | 0.15    | nd               |  |
| C6-C9            | 0.02     | 0.5       | nd         | 1.5       | nd      | nd               |  |
| C10-C14          | 0.04     | 5.4       | 0.2        | 10        | 0.15    | nd               |  |
| C15-C28          | 0.2      | 1.6       | 1.4        | 2.0       | nd      | nd               |  |
| C29-C36          | 0.2      | nd        | nd         | nd        | nd      | nd               |  |
|                  |          |           |            |           |         |                  |  |
|                  |          |           |            |           |         |                  |  |

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm) (O) Oils: mg/kg (ppm)

Reported values may be lower than the stated TPH PQL's if individual hydrocarbons are detected. PQL's for individual hydrocarbons are 1 ppm for soils and 0.01 ppm for water.





VOLATILE HALOGENATED COMPOUNDS (VHC) CLIENT: GROUNDWATER TECHNOLOGY

**REPORT No: 5S02492** 

DowElanco (NZ) Ltd.

SAMPLES: 5 x WATERS, N1034

PAGE: 4 OF CONFIDENTIAL

| SAMPLE I.D.                | PQL<br>- | BH<br>39K | BH<br>39JB | BH<br>39J | BH 2  | Field C | Control<br>Blank |  |
|----------------------------|----------|-----------|------------|-----------|-------|---------|------------------|--|
| LAB I.D.                   | -        | 12339     | 12340      | 12341     | 12342 | 12343   | СВ               |  |
|                            |          |           |            |           |       |         |                  |  |
| VINYL CHLORIDE             | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| CHLOROETHANE               | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| TRICHLOROFLUOROMETHANE     | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| 1,1-DICHLOROETHYLENE       | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| METHYLENE CHLORIDE         | 0.001    | 0.070     | 0.035      | 0.078     | 0.018 | 0.026   | nd               |  |
| trans-1,2-DICHLOROETHYLENE | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| 1,1-DICHLOROETHANE         | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| cis-1,2-DICHLOROETHYLENE   | 0.001    | 0.003     | nd         | 0.006     | nd    | nd      | nd               |  |
| CHLOROFORM                 | 0.001    | 0.031     | 0.005      | 0.020     | 0.001 | 0.005   | nd               |  |
| 1,1,1-TRICHLOROETHANE      | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| CARBON TETRACHLORIDE       | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| 1,2-DICHLOROETHANE         | 0.001    | 0.16      | nd         | 0.14      | nd    | nd      | nd               |  |
| TRICHLOROETHYLENE          | 0.001    | 0.023     | nd         | 0.023     | nd    | nd      | nd               |  |
| 1,2-DICHLOROPROPANE        | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| BROMODICHLOROMETHANE       | 0.001    | nd        | 0.002      | nd        | nd    | 0.002   | nd               |  |
| Trans-1,3-DICHLOROPROPENE  | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| cis-1,3-DICHLOROPROPENE    | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| 1,1,2-TRICHLOROETHANE      | 0.001    | 0.001     | nd         | 0.001     | nd    | nd      | nd               |  |
| TETRACHLOROETHYLENE        | 0.001    | 0.001     | nd         | 0.001     | nd    | nd      | nd               |  |
| DIBROMOCHLOROMETHANE       | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| CHLOROBENZENE              | 0.001    | 0.027     | nd         | 0.13      | nd    | nd      | nd               |  |
| BROMOFORM                  | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| 1,1,2,2-TETRACHLOROETHANE  | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| 1,3-DICHLOROBENZENE (m)    | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| 1,4-DICHLOROBENZENE (p)    | 0.001    | nd        | nd         | nd        | nd    | nd      | nd               |  |
| 1,2-DICHLOROBENZENE (o)    | 0.001    | nd        | nd         | 0.001     | nd    | nd      | nd               |  |
| SURROGATE (% REC)          | -        | 93        | 104        | 91        | 92    | 102     | 97               |  |

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm) (O) Oils: mg/kg (ppm)





CLIENT:

GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No:

5S02492

DowElanco (NZ) Ltd.

SAMPLES:

4 x WATERS, N1034

PAGE:

5 OF CONFIDENTIAL

|             | PQL | ВН    | ВН                                      | ВН    |       |                             |  |
|-------------|-----|-------|-----------------------------------------|-------|-------|-----------------------------|--|
| SAMPLE I.D. |     | 39K   | 39JB                                    | 39J   | BH 2  |                             |  |
| LAB I.D.    |     | 12339 | 12340                                   | 12341 | 12342 |                             |  |
| METHANE     | 0.2 | nd    | nd                                      | nd    | nd    |                             |  |
| ETHANE      | 0.4 | nd    | nd                                      | nd    | nd    |                             |  |
| ETHENE      | 0.4 | nd    | nd                                      | nd    | nd    |                             |  |
|             |     |       |                                         |       |       |                             |  |
|             |     |       |                                         |       |       |                             |  |
|             |     |       |                                         |       |       |                             |  |
|             |     |       |                                         |       |       |                             |  |
|             |     |       |                                         |       |       | Not the last of the last of |  |
|             |     |       | g00151100000000000000000000000000000000 |       |       |                             |  |
|             |     |       |                                         |       |       |                             |  |
|             |     |       |                                         |       |       |                             |  |
|             |     |       |                                         |       |       |                             |  |
|             |     |       |                                         |       |       |                             |  |

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm)





CLIENT:

GROUNDWATER TECHNOLOGY - NEW ZEALAND

REPORT No:

5S02492

SAMPLES: 2 x WATERS, N1034

PAGE: 6 OF 7 DowElanco (N Z) Ltd.

METHOD REFERENCE: APHA 18th Ed. (Unless otherwise specified)

CONFIDENTIAL

| SAMPLE I.D.    | AAL meth. Ref. | PQL   | UNITS | BH<br>39K | BH<br>2 | Control<br>Blank | 1 | 7 |
|----------------|----------------|-------|-------|-----------|---------|------------------|---|---|
| LAB I.D.       | -              |       |       | 12339     | 12342   | СВ               |   |   |
| TOTAL ARSENIC  | E311           | 0.05  | mg/L  | nd        | nd      | nd               |   |   |
| TOTAL MERCURY  | E312           | 0.001 | mg/L  | nd        | nd      | nd               |   |   |
| TOTAL CADMIUM  | E310/E330      | 0.01  | mg/L  | nd        | nd      | nd               |   |   |
| TOTAL CHROMIUM | E310/E330      | 0.05  | mg/L  | nd        | nd      | nd               |   |   |
| TOTAL LEAD     | E310/E330      | 0.05  | mg/L  | nd        | nd      | nd               |   |   |
| TOTAL COPPER   | E310/E330      | 0.05  | mg/L  | nd        | nd      | nd               |   |   |
| TOTAL IRON     | E310/E330      | 0.05  | mg/L  | 7.0       | 0.3     | nd               |   |   |
| TOTAL ZINC     | E310/E330      | 0.05  | mg/L  | nd        | nd      | nd               |   |   |
| TOTAL SILVER   | E310/E330      | 0.01  | mg/L  | nd        | nd      | nd               |   |   |
| TOTAL NICKEL   | E310/E330      | 0.05  | mg/L  | nd        | nd      | nd               |   |   |
|                |                |       |       |           |         |                  |   |   |
|                |                |       |       |           |         |                  |   |   |
|                |                |       |       |           |         |                  |   |   |

PQL = Practical Quantitation Limit

= Less than PQL

Dissolved metals are filtered through 0.45u filter





GROUNDWATER TECHNOLOGY - NEW ZEALAND CLIENT:

5S02492 REPORT No:

SAMPLES: 4 x WATERS, N1034

7 OF 7 PAGE:

METHOD REFERENCE: APHA 18th Ed. (Unless otherwise specified)

DowElanco (NZ) Ltd. CONFIDENTIAL

|                           | AAL        | PQL | UNITS | ВН    | вн    | ВН    | ВН           | Control |
|---------------------------|------------|-----|-------|-------|-------|-------|--------------|---------|
| SAMPLE I.D.               | meth. Ref. |     |       | 39K   | 39JB  | 39J   | 2            | Blank   |
| LAB I.D.                  | -          |     |       | 12339 | 12340 | 12341 | 12342        | СВ      |
| BOD (5)                   | W026       | 5   | mg/L  | 16    | -     | -     | nd           |         |
| TOTAL ORGANIC CARBON      | W048 **    | 1   | mg/L  | 24    | nd    | 20    | 2            | nd      |
| SUSPENDED SOLIDS          | W021       | 2   | mg/L  | 515   |       |       | 275          | nd      |
| ACIDITY                   | W049       | 1   | mg/L  | 98    | -     | -     | 39           | nd      |
| TOTAL ALKALINITY as CaCO3 | W005       | 1   | mg/L  | 275   |       |       | 38           | nd      |
| HARDNESS as CaCO3 (Calc)  | W011.1     | 1   | mg/L  | 210   | -     | -     | 73           | nd      |
| CHEMICAL OXYGEN DEMAND    | W038.1     | 25  | mg/L  | 310   | - 1   | -     | 165          | nd      |
| TOTAL CARBON              | W048 **    | 1   | mg/L  | 98 -  | -     | -     | 11           | nd      |
| INORGANIC CARBON          | W048 **    | 1   | mg/L  | 64    | -     | •     | 8            | nd      |
|                           |            |     |       |       |       |       |              |         |
|                           |            |     |       |       |       |       |              |         |
|                           |            |     |       |       |       |       | o un unite o | E       |

B2

PQL = Practical Quantitation Limit

nd = Less than PQL = Not Applicable

\*\* = USEPA 9060 (Mod.)



# DowElanco (NZ) Ltd. CONFIDENTIAL

## QA/QC APPENDIX No. 5S02492

| ANALYTE                                            | No. of Pages.                                                          |
|----------------------------------------------------|------------------------------------------------------------------------|
| Organochlorine Pesticides                          | 1                                                                      |
| Total Petroleum Hydrocarbons                       | 1                                                                      |
| Volatile Halogenated Carbons                       | 2                                                                      |
| Inorganics/Nutrients                               | 1                                                                      |
|                                                    |                                                                        |
|                                                    |                                                                        |
| TOTAL No. of PAGES                                 | 5                                                                      |
|                                                    |                                                                        |
| Other Criteria: (except Inorganics/Nutri           | ents)                                                                  |
| Retention Time Window Check Standard Recalibration | Within Acceptance Criteria<br>Within Acceptance Criteria<br>Within 15% |

Signed:

7 Camonay

R.G. MOONEY B.Sc.(Hons), Dip.F.D.A., M.R.A.C.I. Authorising Chemist



MATRIX SPIKE/CHECK SOLUTIONS - QA/QC REPORT

CLIENT: GROUNDWATER TECHNOLOGY

REPORT No:

5S02492

SAMPLES: 4 x WATERS, N1034

PAGE: 1 OF 1DowElanco (NZ) Ltd.

CONFIDENTIAL

| UNITS | PQL<br>-                                | Matrix Spike/<br>Check<br>Solution                                                      | Results                                                                                                                                                                                                                                                                                                                                                                                                      | Acceptance<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|-----------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| mg/L  | 1                                       | 100                                                                                     | 101                                                                                                                                                                                                                                                                                                                                                                                                          | ± 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| mg/L  | 0.001                                   | 0.01                                                                                    | 0.009                                                                                                                                                                                                                                                                                                                                                                                                        | <u>+</u> 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| mg/L  | 0.05                                    | 1.0                                                                                     | 0.98                                                                                                                                                                                                                                                                                                                                                                                                         | <u>+</u> 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| mg/L  | 0.05                                    | 0.5                                                                                     | 0.49                                                                                                                                                                                                                                                                                                                                                                                                         | <u>+</u> 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400000100000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mg/L  | 0.05                                    | 0.5                                                                                     | 0.53                                                                                                                                                                                                                                                                                                                                                                                                         | <u>+</u> 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| mg/L  | 0.05                                    | 1.0                                                                                     | 1.03                                                                                                                                                                                                                                                                                                                                                                                                         | <u>+</u> 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| mg/L  | 0.01                                    | 0.5                                                                                     | 0.52                                                                                                                                                                                                                                                                                                                                                                                                         | <u>+</u> 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| mg/L  | 0.01                                    | 1.0                                                                                     | 0.98                                                                                                                                                                                                                                                                                                                                                                                                         | <u>+</u> 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| mg/L  | 2                                       | 100                                                                                     | 99                                                                                                                                                                                                                                                                                                                                                                                                           | ± 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| mg/L  | 5                                       | 200                                                                                     | 223                                                                                                                                                                                                                                                                                                                                                                                                          | <u>+</u> 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L | mg/L 1 mg/L 0.001 mg/L 0.05 mg/L 0.05 mg/L 0.05 mg/L 0.05 mg/L 0.01 mg/L 0.01 mg/L 0.01 | UNITS         PQL         Check Solution           mg/L         1         100           mg/L         0.001         0.01           mg/L         0.05         1.0           mg/L         0.05         0.5           mg/L         0.05         0.5           mg/L         0.05         1.0           mg/L         0.01         0.5           mg/L         0.01         1.0           mg/L         2         100 | UNITS         PQL         Check Solution         Results           mg/L         1         100         101           mg/L         0.001         0.01         0.009           mg/L         0.05         1.0         0.98           mg/L         0.05         0.5         0.49           mg/L         0.05         0.5         0.53           mg/L         0.05         1.0         1.03           mg/L         0.01         0.5         0.52           mg/L         0.01         1.0         0.98           mg/L         2         100         99 | UNITS         PQL         Check Solution         Results         Acceptance Limits           mg/L         1         100         101         ± 10%           mg/L         0.001         0.01         0.009         ± 10%           mg/L         0.05         1.0         0.98         ± 10%           mg/L         0.05         0.5         0.49         ± 10%           mg/L         0.05         0.5         0.53         ± 10%           mg/L         0.05         1.0         1.03         ± 10%           mg/L         0.01         0.5         0.52         ± 10%           mg/L         0.01         1.0         0.98         ± 10%           mg/L         0.01         1.0         0.98         ± 10%           mg/L         2         100         99         ± 10% |

PQL = Practical Quantitation Limit

nd = Less Than PQL - = Not Applicable

QA/QC data within acceptable criteria

# DowElanco (N Z) Ltd. CONFIDENTIAL

#### **Australian Analytical Laboratories**

OC's "A" - Matrix Spike/Duplicate

Reference No:

110909a1

Matrix ID:

mb (water)

Page:

1 of 1

|                | Spike          | Level            | Detected         | etected Recovery Details |              |                |            |  |
|----------------|----------------|------------------|------------------|--------------------------|--------------|----------------|------------|--|
| Analyte        | Level<br>(ppm) | Spike 1<br>(ppm) | Spike 2<br>(ppm) | Rec 1<br>(%)             | Rec 2<br>(%) | Average<br>(%) | RPD<br>(%) |  |
| НСВ            | 0.05           | 0.05             | 0.05             | 97%                      | 97%          | 97%            | 0%         |  |
| alpha- BHC     | 0.05           | 0.05             | 0.05             | 105%                     | 107%         | 106%           | 2%         |  |
| Lindane        | 0.05           | 0.05             | 0.05             | 105%                     | 106%         | 105%           | 2%         |  |
| Heptachlor     | 0.05           | 0.05             | 0.05             | 97%                      | 96%          | 97%            | 0%         |  |
| Aldrin         | 0.05           | 0.05             | 0.05             | 102%                     | 102%         | 102%           | 0%         |  |
| beta- BHC      | 0.05           | 0.05             | 0.05             | 106%                     | 105%         | 105%           | 1%         |  |
| Oxychlordane   | 0.05           | 0.05             | 0.05             | 103%                     | 103%         | 103%           | 0%         |  |
| Hept.Epoxide   | 0.05           | 0.05             | 0.05             | 105%                     | 105%         | 105%           | 1%         |  |
| o,p'-DDE       | 0.05           | 0.05             | 0.05             | 103%                     | 105%         | 104%           | 1%         |  |
| Tech.Chlordane | 0.15           | 0.15             | 0.16             | 103%                     | 104%         | 104%           | 1%         |  |
| p,p'-DDE       | 0.05           | 0.05             | 0.05             | 104%                     | 105%         | 104%           | 1%         |  |
| Dieldrin       | 0.05           | 0.05             | 0.05             | 105%                     | 106%         | 105%           | 1%         |  |
| Endrin         | 0.05           | 0.05             | 0.05             | 98%                      | 100%         | 99%            | 2%         |  |
| o,p'-DDD       | 0.05           | 0.05             | 0.05             | 98%                      | 100%         | 99%            | 2%         |  |
| p,p'-DDD       | 0.05           | 0.05             | 0.06             | 107%                     | 110%         | 109%           | 2%         |  |
| p,p'-DDT       | 0.05           | 0.05             | 0.05             | 97%                      | 99%          | 98%            | 2%         |  |
| Methoxychlor   | 0.05           | 0.04             | 0.04             | 87%                      | 87%          | 87%            | 0%         |  |

Spike Units: mg/l

ppm

nd = Not Detected

= Not Applicable

MB = Matrix Blank

All results are within the acceptance criteria

Water samples

%Recoveries within 70 - 130%

%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%Recoveries within 70 - 130%

%RPD < 50% for low level (<10xPQL)



#### PH - Matrix Spike/Duplicate

eference No:

111201h1

latrix ID:

MB - WATER

Page:

1 of 1

| Analyte Spike Level (ppm) | Level            | Detected         | Recovery Details |              |                |            |     |  |
|---------------------------|------------------|------------------|------------------|--------------|----------------|------------|-----|--|
|                           | Spike 1<br>(ppm) | Spike 2<br>(ppm) | Rec 1<br>(%)     | Rec 2<br>(%) | Average<br>(%) | RPD<br>(%) |     |  |
| PH C20-C28                | 5.00             | 5.54             | 4.7              | 111%         | 95%            | 103%       | 16% |  |
| 8                         | 0.50             | 0.64             | 0.6              | 128%         | 118%           | 123%       | 8%  |  |

Spike Units:

mg/L (ppm)

nd = Not Detected

- = Not Applicable

MB = Matrix Blank

All results are within the acceptance criteria

Water samples

Recoveries within 70 - 130%

RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%Recoveries within 70 - 130%

%RPD < 50% for low level (<10xPQL)



#### VHC's "A" - Matrix Spike/Duplicate

Reference No:

111104d1

Matrix ID:

MB

Page:

1 of 2

|                            | Spike          | Level            | Detected         |           | Recovery     | Details        |            |
|----------------------------|----------------|------------------|------------------|-----------|--------------|----------------|------------|
| Analyte                    | Level<br>(ppm) | Spike 1<br>(ppm) | Spike 2<br>(ppm) | Rec 1 (%) | Rec 2<br>(%) | Average<br>(%) | RPD<br>(%) |
| Vinyl Chloride             | 0.008          | 0.0085           | 0.0077           | 106%      | 96%          | 101%           | 10%        |
| Chloroethane               | 0.002          | 0.0021           | 0.0020           | 105%      | 98%          | 101%           | 7%         |
| Trichorofluoromethane      | 0.002          | 0.0021           | 0.0024           | 103%      | 121%         | 112%           | 16%        |
| 1,1-Dichloroethylene       | 0.002          | 0.0024           | 0.0024           | 121%      | 119%         | 120%           | 1%         |
| Methylene Chloride         | 0.002          | 0.0023           | 0.0022           | 113%      | 109%         | 111%           | 3%         |
| trans-1,2-Dichloroethylene | 0.002          | 0.0022           | 0.0020           | 108%      | 100%         | 104%           | 8%         |
| 1,1-Dichloroethane         | 0.002          | 0.0022           | 0.0022           | 110%      | 108%         | 109%           | 2%         |
| Chloroform                 | 0.002          | 0.0021           | 0.0021           | 103%      | 104%         | 104%           | 0%         |
| 1,1,1-Trichloroethane      | 0.002          | 0.0022           | 0.0021           | 108%      | 105%         | 106%           | 3%         |
| Carbon Tetrachloride       | 0.002          | 0.0021           | 0.0021           | 106%      | 106%         | 106%           | 0%         |
| 1,2-Dichloroethane         | 0.002          | 0.0022           | 0.0024           | 110%      | 119%         | 114%           | 7%         |
| Trichloroethylene          | 0.002          | 0.0021           | 0.0021           | 103%      | 103%         | 103%           | 0%         |
| 1,2-Dichloropropane        | 0.002          | 0.0019           | 0.0021           | 94%       | 105%         | 100%           | 11%        |
| Bromodichloromethane       | 0.002          | 0.0023           | 0.0023           | 117%      | 113%         | 115%           | 3%         |
| trans-1,3-Dichloropropene  | 0.002          | 0.0020           | 0.0021           | 102%      | 107%         | 104%           | 5%         |
| cis-1,3-Dichloropropene    | 0.002          | 0.0019           | 0.0022           | 94%       | 109%         | 102%           | 15%        |
| 1,1,2-Trichloroethane      | 0.002          | 0.0021           | 0.0022           | 105%      | 110%         | 108%           | 4%         |
| Tetrachloroethylene        | 0.002          | 0.0021           | 0.0021           | 105%      | 106%         | 106%           | 1%         |
| Dibromochloromethane       | 0.002          | 0.0021           | 0.0017           | 103%      | 85%          | 94%            | 19%        |

Spike Units:

mg/L (ppm)

nd = Not Detected

- = Not Applicable

MB = Matrix Blank

All results are within the acceptance criteria

Water samples

%Recoveries within 70 - 130%

%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%Recoveries within 70 - 130%

%RPD < 50% for low level (<10xPQL)



VAC's "B" - Matrix Spike/Duplicate

Rerence No:

111104d1

Metrix ID:

MB

Page: 2 of 2

|                             | Spike          | Level            | Detected         | Recovery Details |              |                |            |  |
|-----------------------------|----------------|------------------|------------------|------------------|--------------|----------------|------------|--|
| Analyte                     | Level<br>(ppm) | Spike 1<br>(ppm) | Spike 2<br>(ppm) | Rec 1 (%)        | Rec 2<br>(%) | Average<br>(%) | RPD<br>(%) |  |
| Corobenzene                 | 0.002          | 0.0018           | 0.0021           | 89%              | 104%         | 97%            | 16%        |  |
| Bemoform                    | 0.002          | 0.0023           | 0.0022           | 115%             | 110%         | 113%           | 4%         |  |
| 1,1,2,2 - Tetrachloroethane | 0.002          | 0.0021           | 0.0022           | 106%             | 109%         | 108%           | 3%         |  |
| 1 - Dichlorobenzene         | 0.002          | 0.0020           | 0.0022           | 102%             | 110%         | 106%           | 8%         |  |
| 1 - Dichlorobenzene         | 0.002          | 0.0022           | 0.0021           | 110%             | 107%         | 109%           | 3%         |  |
| 1,2 - Dichlorobenzene       | 0.002          | 0.0024           | 0.0023           | 118%             | 115%         | 116%           | 3%         |  |

S ke Units:

mg/L (ppm)

nd = Not Detected

- = Not Applicable

MB = Matrix Blank

All results are within the acceptance criteria

Vater samples

%Recoveries within 70 - 130%

PRPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%Recoveries within 70 - 130%

%RPD < 50% for low level (<10xPQL)





test(s) reported herein have been performed in accordance with its terms of registration. This

## DowElanco (NZ) Ltd. CONFIDENTIAL

#### INDUSTRIAL AND ENVIRONMENTAL SERVICES DIVISION

Trading as Australian Analytical Laboratories Pty Ltd

A.C.N. 001 491 667

Correspondence to:

P.O. Box 514 HORNSBY NSW 2077 5 Kelray Place

ASQUITH NSW 2077 Telephone: (02) 482 1922

Facsimile: (02) 482 1734

#### CERTIFICATE OF ANALYSIS

DATE:

22/11/95

REPORT No: 5S02414

Page: 1 of 6

QA/QC Appendix

CLIENT:

Groundwater Technology Aust. Pty. Ltd.

SAMPLES:

6 x Waters

REFERENCE:

N1034

LAB Nos.:

12007 - 12012

DATE RECEIVED:

2/11/95

DATE COMMENCED:

2/11/95

TEST:

METHOD:

1. Organochlorine Pesticides / PCB's

E011

2. Volatile Halogenated Compounds

E042

TPH/BTEX 3.

E081 / E052

4. Total Organic Carbon W048

RESULTS:

All samples analysed as received.

This report replaces preliminary results issued on 10/11/95, 20/11/95 & 23/11/95

Please see attached pages for results

R.G. MOONEY B.Sc.(Hons), Dip.F.D.A., M.R.A.C.I.

**Authorising Chemist** 





DowElanco (N Z) Ltd.

CONFIDENTIAL

ORGANOCHLORINE PESTICIDES / PCBs (OC/PCB) (PCB 1016,1221,1232,1242,1248,1254,1260)

CLIENT: GROUNDWATER TECHNOLOGY

REPORT No: 5S02414

SAMPLES: 4 x WATERS, N1034

PAGE: 2 of 6

|                      | PQL   |       |       |       |       | Control |           |
|----------------------|-------|-------|-------|-------|-------|---------|-----------|
| SAMPLE I.D.          | -     | BH42  | BH41  | BH44  | BH44S | Blank   |           |
| LAB I.D.             | -     | 12008 | 12009 | 12010 | 12011 | СВ      |           |
| MOISTURE (% w/w)     | -     | -     | -     |       | -     | -       |           |
| H.C.B.               | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| a-BHC                | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| LINDANE              | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| HEPTACHLOR           | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| ALDRIN               | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| b-BHC                | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| delta-BHC            | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| OXYCHLORDANE         | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| HEPTACHLOR EPOXIDE   | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| a-ENDOSULFAN         | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| gamma-CHLORDANE      | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| alpha-CHLORDANE      | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| trans-NANOCHLOR      | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| TOTAL DDE's          | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| DIELDRIN             | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| ENDRIN               | 0.001 | nd    | nd    | nd    | nd    | nd      | access of |
| TOTAL DDD's          | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| b-ENDOSULPHAN        | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| TOTAL DDT's          | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| ENDOSULPHAN SULPHATE | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| METHOXYCHLOR         | 0.001 | nd    | nd    | nd    | nd    | nd      |           |
| PCB's                | 0.01  | nd    | nd    | nd    | nd    | nd      |           |
| PCB IDENTIFICATION   | -     | -     | -     | -     |       | -       |           |
| SURROGATE % REC      | -     | 99    | 101   | 104   | 106   | -       |           |

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

(W) Waters: mg/l (ppm)



#### **VOLATILE HALOGENATED CARBONS (VHC)**

# DowElanco (N Z) Ltd. CONFIDENTIAL

CLIENT:

**GROUNDWATER TECHNOLOGY** 

REPORT No: 5S02414

SAMPLES:

5 x WATERS; N1034

PAGE: 3 of 6

| SAMPLE I.D.                | PQL<br>- | BH16a | BH42  | BH41  | BH44  | BH44S | Control<br>Blank |
|----------------------------|----------|-------|-------|-------|-------|-------|------------------|
| LAB I.D.                   | -        | 12007 | 12008 | 12009 | 10010 | 12011 | СВ               |
| VINYL CHLORIDE             | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| CHLOROETHANE               | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| TRICHLOROFLUOROMETHANE     | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| 1,1-DICHLOROETHYLENE       | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| METHYLENE CHLORIDE         | 0.001    | 0.003 | 0.008 | 0.006 | 0.002 | 0.004 | nd               |
| trans-1,2-DICHLOROETHYLENE | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| 1,1-DICHLOROETHANE         | 0.001    | nd    | 0.001 | 0.001 | nd    | nd    | nd               |
| cis-1,2-DICHLOROETHYLENE   | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| CHLOROFORM                 | 0.001    | nd    | 0.012 | 0.004 | nd    | nd    | nd               |
| 1,1,1-TRICHLOROETHANE      | 0.001    | nd    | 0.005 | 0.002 | nd    | nd    | nd               |
| CARBON TETRACHLORIDE       | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| 1,2-DICHLOROETHANE         | 0.001    | nd    | 0.001 | nd    | nd    | nd    | nd               |
| TRICHLOROETHYLENE          | 0.001    | nd    | 0.007 | 0.014 | nd    | nd    | nd               |
| 1,2-DICHLOROPROPANE        | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| BROMODICHLOROMETHANE       | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| trans-1,3-DICHLOROPROPENE  | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| cis-1,3-DICHLORGPROPENE    | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| 1,1,2-TRICHLOROETHANE      | 0.001    | nd    | 0.002 | nd    | nd    | nd    | nd               |
| TETRACHLOROETHYLENE        | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| DIBROMOCHLOROMETHANE       | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| CHLOROBENZENE              | 0.001    | 0.015 | nd    | nd    | nd    | nd    | nd               |
| BROMOFORM                  | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| 1,1,2,2-TETRACHLOROETHANE  | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| 1,3-DICHLOROBENZENE (m)    | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| 1,4-DICHLOROBENZENE (p)    | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| 1,2-DICHLOROBENZENE (o)    | 0.001    | 0.010 | nd    | nd    | nd    | nd    | nd               |
| SURROGATE (% REC)          | -        | 113   | 106   | 109   | 102   | 99    | 89               |

vhc

PQL = Practical Quantitation Limit

- = Not Applicable

nd = Less than PQL

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm)





#### TOTAL PETROLEUM HYDROCARBONS/BTEX (TPH/BTEX)

DowElanco (N Z) Ltd.

CONFIDENTIAL

CLIENT: GROUNDWATER TECHNOLOGY

REPORT No: 5S02414

SAMPLES: 4 x WATERS; N1034

PAGE: 4 of 6

| PQL<br>- | BH42                               | BH41           | BH44                                                              | BH44S                                                                                        | Control<br>Blank                                 |                                                           |
|----------|------------------------------------|----------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|
| -        | 12008                              | 12009          | 12010                                                             | 12011                                                                                        | СВ                                               |                                                           |
|          | -                                  |                | -                                                                 | -                                                                                            | -                                                |                                                           |
| -   -    | -                                  | -              | -                                                                 | -                                                                                            | -                                                |                                                           |
| -        | nd                                 | nd             | nd                                                                | nd                                                                                           | nd                                               |                                                           |
| 0.02     | nd                                 | nd             | nd                                                                | nd                                                                                           | nd                                               |                                                           |
| 0.04     | nd                                 | nd             | nd                                                                | nd                                                                                           | nd                                               |                                                           |
| 0.2      | nd                                 | nd             | nd                                                                | nd                                                                                           | nd                                               |                                                           |
| 0.2      | nd                                 | nd             | nd                                                                | nd                                                                                           | nd                                               |                                                           |
|          |                                    |                |                                                                   |                                                                                              |                                                  |                                                           |
|          |                                    |                | n sha                                                             |                                                                                              |                                                  |                                                           |
|          | -<br>-<br>-<br>0.02<br>0.04<br>0.2 | - BH42 - 12008 | - BH42 BH41 - 12008 12009  nd nd 0.02 nd nd 0.04 nd nd 0.02 nd nd | - BH42 BH41 BH44  - 12008 12009 12010  nd nd nd nd 0.02 nd nd nd 0.04 nd nd nd 0.02 nd nd nd | - BH42 BH41 BH44 BH44S - 12008 12009 12010 12011 | - BH42 BH41 BH44 BH44S Blank - 12008 12009 12010 12011 CB |

tph-btex

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm)

Reported values may be lower than the stated TPH PQL's if individual hydrocarbons are detected. PQL's for individual hydrocarbons are 1 ppm for soils and 0.01 ppm for water.





#### BTEX BY PURGE and TRAP

DowElanco (NZ) Ltd.

CONFIDENTIAL

CLIENT:

**GROUNDWATER TECHNOLOGY** 

REPORT No: 5S02414

SAMPLES:

1 x WATER; N1034

PAGE: 5 of 6

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40007 |                        |                              |                              |                              |                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------|------------------------------|------------------------------|------------------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12007 | СВ                     |                              | - 1, 1,                      |                              |                           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -     | -                      |                              |                              |                              | 275                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -     |                        |                              |                              |                              | 7=0-                      |
| 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd    | nd                     |                              |                              |                              |                           |
| 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nd    | nd                     |                              |                              |                              |                           |
| 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.16  | nd                     |                              |                              |                              | 1 Test                    |
| 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.36  | nd                     |                              |                              | and the second of            | E KIND DE                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                        |                              |                              |                              |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                        |                              |                              |                              |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                        |                              |                              |                              |                           |
| Control of the contro |       |                        |                              |                              |                              |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.001 | 0.001 nd<br>0.001 0.16 | 0.001 nd nd<br>0.001 0.16 nd | 0.001 nd nd<br>0.001 0.16 nd | 0.001 nd nd<br>0.001 0.16 nd | 0.001 nd nd 0.001 0.16 nd |

BTEX-PT

PQL = Practical Quantitation Limit

= Less than PQL = Not Applicable

(S) Soils:

mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm)





## DowElanco (NZ) Ltd. CONFIDENTIAL

CLIENT:

**GROUNDWATER TECHNOLOGY** 

**REPORT No: 5S02414** 

SAMPLES: 4 x WATERS

PAGE: 6 of 6

METHOD REFERENCE: APHA 18th Ed. (Unless otherwise specified)

| SAMPLE I.D.          | Amdel<br>Meth. Ref. | PQL<br>- | UNITS<br>- | BH42  | BH41  | BH44  | BH44S | Control<br>Blank |
|----------------------|---------------------|----------|------------|-------|-------|-------|-------|------------------|
| LAB I.D.             |                     | -        |            | 12008 | 12009 | 12010 | 12011 | СВ               |
| TOTAL ORGANIC CARBON | W048 **             | 1        | mg/L       | 1     | 4     | 6     | 3     | nd               |
|                      |                     |          |            |       |       |       |       |                  |

WB2

PQL = Practical Quantitation Limit

nd = Less than PQL

= Not Applicable

\*\* = USEPA 9060 (Mod.)



# Mil (24) Andreil Mil (24) Andreil

DowElanco (NZ) Ltd.
CONFIDENTIAL

## QA/QC APPENDIX No. 5S02414

| ANALYTE                                                  | No. o                                                            | of Pages. |
|----------------------------------------------------------|------------------------------------------------------------------|-----------|
|                                                          |                                                                  |           |
| Organochlorine Pesticides                                |                                                                  | 1         |
| Volatile Halogenated Compounds                           |                                                                  | 2         |
| TPH                                                      |                                                                  | 1         |
| BTEX                                                     |                                                                  | 1         |
| Total Organic Carbon                                     |                                                                  | 1         |
|                                                          |                                                                  |           |
|                                                          |                                                                  |           |
|                                                          |                                                                  |           |
| TOTAL No. of PAGES                                       |                                                                  | 6         |
|                                                          |                                                                  |           |
| Other Criteria: (except Inorganics                       | s/Nutrients)                                                     |           |
| Retention Time Window<br>Check Standard<br>Recalibration | Within Acceptance Criteria Within Acceptance Criteria Within 15% |           |

Signed:

R.G. MOONEY B.Sc.(Hons), Dip.F.D.A., M.R.A.C.I. Authorising Chemist



OC's "A" - Matrix Spike/Duplicate

Reference No:

110909a1

Matrix ID:

mb (water)

Page:

1 of 1

|                | Spike          | Level            | Detected         |              | Recovery     | Details        |            |
|----------------|----------------|------------------|------------------|--------------|--------------|----------------|------------|
| 7.11.00.71.0   | Level<br>(ppm) | Spike 1<br>(ppm) | Spike 2<br>(ppm) | Rec 1<br>(%) | Rec 2<br>(%) | Average<br>(%) | RPD<br>(%) |
| НСВ            | 0.05           | 0.05             | 0.05             | 97%          | 97%          | 97%            | 0%         |
| alpha- BHC     | 0.05           | 0.05             | 0.05             | 105%         | 107%         | 106%           | 2%         |
| Lindane        | 0.05           | 0.05             | 0.05             | 105%         | 106%         | 105%           | 2%         |
| Heptachlor     | 0.05           | 0.05             | 0.05             | 97%          | 96%          | 97%            | 0%         |
| Aldrin         | 0.05           | 0.05             | 0.05             | 102%         | 102%         | 102%           | 0%         |
| beta- BHC      | 0.05           | 0.05             | 0.05             | 106%         | 105%         | 105%           | 1%         |
| Oxychlordane   | 0.05           | 0.05             | 0.05             | 103%         | 103%         | 103%           | 0%         |
| Hept.Epoxide   | 0.05           | 0.05             | 0.05             | 105%         | 105%         | 105%           | 1%         |
| o,p'-DDE       | 0.05           | 0.05             | 0.05             | 103%         | 105%         | 104%           | 1%         |
| Tech.Chlordane | 0.15           | 0.15             | 0.16             | 103%         | 104%         | 104%           | 1%         |
| p,p'-DDE       | 0.05           | 0.05             | 0.05             | 104%         | 105%         | 104%           | 1%         |
| Dieldrin       | 0.05           | 0.05             | 0.05             | 105%         | 106%         | 105%           | 1%         |
| Endrin         | 0.05           | 0.05             | 0.05             | 98%          | 100%         | 99%            | 2%         |
| o,p'-DDD       | 0.05           | 0.05             | 0.05             | 98%          | 100%         | 99%            | 2%         |
| p,p'-DDD       | 0.05           | 0.05             | 0.06             | 107%         | 110%         | 109%           | 2%         |
| p,p'-DDT       | 0.05           | 0.05             | 0.05             | 97%          | 99%          | 98%            | 2%         |
| Methoxychlor   | 0.05           | 0.04             | 0.04             | 87%          | 87%          | 87%            | 0%         |

Spike Units: mg/l

ppm

nd = Not Detected

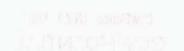
- = Not Applicable

MB = Matrix Blank

All results are within the acceptance criteria

Water samples

%Recoveries within 70 - 130%


%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%Recoveries within 70 - 130%

%RPD < 50% for low level (<10xPQL)



DowElanco (N Z) Ltc.
CONFIDENTIAL

#### **Australian Analytical Laboratories**

VHC's "A" - Matrix Spike/Duplicate

Reference No:

110204d1

Matrix ID:

mb

Page:

1 of 2

| THE RESERVE THE RE | Spike          | Level            | Detected         |           | Recovery     | Details        |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|------------------|-----------|--------------|----------------|-----|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Level<br>(ppm) | Spike 1<br>(ppm) | Spike 2<br>(ppm) | Rec 1 (%) | Rec 2<br>(%) | Average<br>(%) | (%) |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008          | 0.0093           | 0.0096           | 116%      | 120%         | 118%           | 3%  |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.002          | 0.0018           | 0.0019           | 88%       | 94%          | 91%            | 6%  |
| Trichorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.002          | 0.0017           | 0.0017           | 84%       | 87%          | 85%            | 4%  |
| 1,1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.002          | 0.0017           | 0.0018           | 83%       | 88%          | 85%            | 5%  |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.002          | 0.0017           | 0.0020           | 85%       | 99%          | 92%            | 15% |
| trans-1,2-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.002          | 0.0018           | 0.0020           | 91%       | 98%          | 94%            | 7%  |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.002          | 0.0017           | 0.0019           | 87%       | 95%          | 91%            | 8%  |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.002          | 0.0022           | 0.0021           | 108%      | 106%         | 107%           | 2%  |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.002          | 0.0019           | 0.0020           | 93%       | 100%         | 96%            | 7%  |
| Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.002          | 0.0018           | 0.0020           | 88%       | 101%         | 94%            | 15% |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.002          | 0.0019           | 0.0020           | 93%       | 98%          | 96%            | 5%  |
| Trichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.002          | 0.0020           | 0.0022           | 98%       | 109%         | 104%           | 11% |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.002          | 0.0018           | 0.0021           | 92%       | 103%         | 97%            | 11% |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.002          | 0.0018           | 0.0019           | 88%       | 97%          | 92%            | 10% |
| trans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002          | 0.0018           | 0.0021           | 90%       | 105%         | 98%            | 15% |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.002          | 0.0020           | 0.0019           | 99%       | 96%          | 97%            | 3%  |
| Tetrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.002          | 0.0018           | 0.0019           | 88%       | 94%          | 91%            | 8%  |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.002          | 0.0018           | 0.0019           | 88%       | 94%          | 91%            | 7%  |

Spike Units:

mg/L (ppm)

nd = Not Detected

- = Not Applicable

MB = Matrix Blank

All results are within the acceptance criteria

Water samples

%Recoveries within 70 - 130%

%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%Recoveries within 70 - 130%

%RPD < 50% for low level (<10xPQL)



### C's "B" - Matrix Spike/Duplicate

ference No:

110204d1

trix ID:

mb

Page:

2 of 2

|                             | Spike          | Level            | Detected         | Recovery Details |              |                |            |  |
|-----------------------------|----------------|------------------|------------------|------------------|--------------|----------------|------------|--|
| Analyte                     | Level<br>(ppm) | Spike 1<br>(ppm) | Spike 2<br>(ppm) | Rec 1 (%)        | Rec 2<br>(%) | Average<br>(%) | RPD<br>(%) |  |
| Olorobenzene                | 0.002          | 0.0018           | 0.0019           | 92%              | 95%          | 93%            | 2%         |  |
| Epmoform                    | 0.002          | 0.0018           | 0.0020           | 88%              | 98%          | 93%            | 11%        |  |
| 1,1,2,2 - Tetrachloroethane | 0.002          | 0.0019           | 0.0020           | 96%              | 99%          | 97%            | 3%         |  |
| 1 B - Dichlorobenzene       | 0.002          | 0.0018           | 0.0019           | 88%              | 96%          | 92%            | 9%         |  |
| 1 4 - Dichlorobenzene       | 0.002          | 0.0018           | 0.0019           | 92%              | 97%          | 94%            | 6%         |  |
| 1,2 - Dichlorobenzene       | 0.002          | 0.0018           | 0.0019           | 90%              | 94%          | 92%            | 4%         |  |

ike Units:

mg/L (ppm)

nd = Not Detected

- = Not Applicable

MB = Matrix Blank

All results are within the acceptance criteria

ater samples %Recoveries within 70 - 130%

%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%Recoveries within 70 - 130%

%RPD < 50% for low level (<10xPQL)



#### **TPH - Matrix Spike/Duplicate**

Reference No:

112201h1

Matrix ID:

MB - WATER

Page:

1 of 1

| Analyte Lev | Spike          | Level            | Spike 2<br>(ppm) | Recovery Details |              |                |            |  |  |
|-------------|----------------|------------------|------------------|------------------|--------------|----------------|------------|--|--|
|             | Level<br>(ppm) | Spike 1<br>(ppm) |                  | Rec 1<br>(%)     | Rec 2<br>(%) | Average<br>(%) | RPD<br>(%) |  |  |
| TPH C20-C28 | 5.00           | 5.31             | 4.97             | 106%             | 99%          | 103%           | 7%         |  |  |
| C8          | 0.50           | 0.50             | 0.47             | 101%             | 94%          | 97%            | 7%         |  |  |

Spike Units:

mg/L (ppm)

nd = Not Detected

- = Not Applicable

MB = Matrix Blank

All results are within the acceptance criteria

Water samples

%Recoveries within 70 - 130%

%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%Recoveries within 70 - 130%

%RPD < 50% for low level (<10xPQL)

# DowElanco (NZ) Ltd. CONFIDENTIAL

#### **Australian Analytical Laboratories**

#### TEX - Matrix Spike/Duplicate

teference No:

110204e1

Matrix ID:

mb

Page:

1 of 1

|               | Spike          | Level            | Detected         | Recovery Details |              |                |            |  |  |
|---------------|----------------|------------------|------------------|------------------|--------------|----------------|------------|--|--|
| T             | Level<br>(ppm) | Spike 1<br>(ppm) | Spike 2<br>(ppm) | Rec 1 (%)        | Rec 2<br>(%) | Average<br>(%) | RPD<br>(%) |  |  |
| BENZENE       | 0.002          | 0.0019           | 0.0018           | 94%              | 89%          | 91%            | 5%         |  |  |
| TOLUENE       | 0.002          | 0.0017           | 0.0019           | 83%              | 93%          | 88%            | 11%        |  |  |
| ETHYL BENZENE | 0.002          | 0.0019           | 0.0019           | 96%              | 94%          | 95%            | 2%         |  |  |
| KYLENE        | 0.006          | 0.0058           | 0.0056           | 96%              | 93%          | 95%            | 3%         |  |  |

Spike Units:

mg/L (ppm)

nd = Not Detected

- = Not Applicable

MB = Matrix Blank

All results are within the acceptance criteria

Water samples

%Recoveries within 70 - 130%

%RPD < 40% for low level (<10xPQL)

< 20% for high level (>10xPQL)

Soil samples

%Recoveries within 70 - 130%

%RPD < 50% for low level (<10xPQL)





#### MATRIX SPIKE/CHECK SOLUTIONS - QA/QC REPORT

DowElanco (NZ) Ltd.

CONFIDENTIAL

CLIENT:

**GROUNDWATER TECHNOLOGY** 

REPORT No: 5S02414

SAMPLES:

4 x WATERS; N1034

PAGE: 1 of 1

01

| ANALYTE              | UNITS                     | PQL<br>- | Matrix Spike/<br>Check<br>Solution | Results | Acceptance<br>Limits | COMMENTS |
|----------------------|---------------------------|----------|------------------------------------|---------|----------------------|----------|
| TOTAL ORGANIC CARBON | mg/L                      | 1        | 100                                | 101     | <u>+</u> 10%         |          |
|                      | -                         |          |                                    |         |                      |          |
|                      |                           |          |                                    |         |                      |          |
|                      |                           |          |                                    | n e     |                      |          |
|                      |                           |          |                                    |         |                      |          |
|                      | Description of the second |          |                                    |         |                      |          |

Q84M

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

QA/QC data within acceptable criteria





Registered No. 1464 DOWElanco (NZ) Ltd.

## CONFIDENTIAL

#### INDUSTRIAL AND ENVIRONMENTAL SERVICES DIVISION

Trading as Australian Analytical Laboratories Pty Ltd

A.C.N. 001 491 667

5 Kelray Place

Correspondence to:

ASQUITH NSW 2077

P.O. Box 514

Telephone: (02) 482 1922

HORNSBY NSW 2077

Facsimile: (02) 482 1734

#### **CERTIFICATE OF ANALYSIS**

DATE:

20/11/95

REPORT No: 5S02034

Page: 1 of 15 QA/QC Appendix

CLIENT:

Groundwater Technology New Zealand

SAMPLES:

15 x Waters

REFERENCE:

N1034

LAB Nos.:

10486 - 10500

DATE RECEIVED:

18/10/95

DATE COMMENCED:

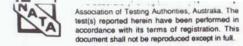
18/10/95

|     | TEST:                           | METHOD: |
|-----|---------------------------------|---------|
| 1.  | Organochlorine Pesticides/PCB's | E011    |
| 2.  | Total Petroleum Hydrocarbons    | E081    |
| 3.  | Methane, Ethane, Ethene         | M11/1   |
| 4   | VHC                             | E042    |
| 5.  | BOD (5), BOD (20)               | W026    |
| 6.  | pH                              | W031    |
| 7.  | Conductivity                    | W032    |
| 8.  | Total Dissolved Solids          | W033    |
| 9.  | Chemical Oxygen Demand          | E038    |
| 10. | Total Organic Carbon            | W048    |

RESULTS:

All samples analysed as received.

This report replaces any preliminary results issued on 9/11/95


20/11/95

27/11/95

Please see attached pages for results

R.G. MOONEY B.Sc. (Hons), Dip.F.D.A., M.R.A.C.I.

**Authorising Chemist** 







ORGANOCHLORINE PESTICIDES / PCBs (OC/PCB) (PCB 1016,1221,1232,1242,1248,1254,1260)

CLIENT: GROUNDWATR TECHNOLOGY - NEW ZEALAND REPORT No: 5S02034

DowElanco (NZ) Ltd.

SAMPLES: 11 x WATERS, N1034

PAGE: 2 OF 15 CONFIDENTIAL

| SAMPLE I.D.          | PQL<br>- | BH 15 | BH 40 | BH 39 | внз9в | внзз  | BH33S |
|----------------------|----------|-------|-------|-------|-------|-------|-------|
| LAB I.D.             | 1.4      | 10486 | 10489 | 10490 | 10491 | 10492 | 10493 |
| MOISTURE % w/w       | -        | -     |       | -     | -     | -     | -     |
| H.C.B.               | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| α-ВНС                | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| LINDANE              | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| HEPTACHLOR           | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| ALDRIN               | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| β-внс                | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| δ-внс                | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| OXYCHLORDANE         | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| HEPTACHLOR EPOXIDE   | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| α-ENDOSULFAN         | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| γ-CHLORDANE          | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| α-CHLORDANE          | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| trans- NONACHLOR     | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| TOTAL DDE's          | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| DIELDRIN             | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| ENDRIN               | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| TOTAL DDD's          | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| β-ENDOSULPHAN        | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| TOTAL DDT's          | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| ENDOSULPHAN SULPHATE | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| METHOXYCHLOR         | 0.001    | nd    | nd    | nd    | nd    | nd    | nd    |
| PCB's                | 0.01     | nd    | nd    | nd    | nd    | nd    | nd    |
| PCB IDENTIFICATION   | -        | -     | -     | -     | -     | -     | -     |
| SURROGATE % RECOVERY |          | 99    | 107   | 105   | 113   | 114   | 110   |

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

(W) Water: mg/l (ppm)





ORGANOCHLORINE PESTICIDES / PCBs (OC/PCB) (PCB 1016,1221,1232,1242,1248,1254,1260)

CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No: 5S02034

DowElanco (NZ) Ltd.

SAMPLES: 11 x WATERS, N1034 PAGE:

3 OF 15 CONFIDENTIAL

| SAMPLE I.D.          | PQL<br>- | BH34  | BH37  | BH28  | BH36  | BH28B | Control<br>Blank |
|----------------------|----------|-------|-------|-------|-------|-------|------------------|
| LAB I.D.             | -        | 10494 | 10495 | 10498 | 10499 | 10500 | СВ               |
| MOISTURE % w/w       | -        | -     | -     | -     | -     | -     | -                |
| H.C.B.               | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| α-BHC                | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| LINDANE              | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| HEPTACHLOR           | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| ALDRIN               | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| β-внс                | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| δ-ВНС                | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| OXYCHLORDANE         | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| HEPTACHLOR EPOXIDE   | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| α-ENDOSULFAN         | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| γ-CHLORDANE          | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| α-CHLORDANE          | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| trans- NONACHLOR     | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| TOTAL DDE's          | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| DIELDRIN             | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| ENDRIN               | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| TOTAL DDD's          | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| β-ENDOSULPHAN        | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| TOTAL DDT's          | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| ENDOSULPHAN SULPHATE | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| METHOXYCHLOR         | 0.001    | nd    | nd    | nd    | nd    | nd    | nd               |
| PCB's                | 0.01     | nd    | nd    | nd    | nd    | nd    | nd               |
| PCB IDENTIFICATION   | -        | -     | -     | -     | -     | -     | -                |
| SURROGATE % RECOVERY |          | 101   | 102   | 105   | 115   | 116   | -                |

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

(W) Water: mg/l (ppm)





### TOTAL PETROLEUM HYDROCARBONS/BTEX (TPH/BTEX)

DowElanco (NZ) Ltd.
CONFIDENTIAL

CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No: 5S02034

SAMPLES: 11 x WATERS PAGE: 4 OF 15

| SAMPLE I.D.      | PQL - | BH 15 | BH 40 | BH 39  | BH 39B | BH 33 | BH 33S |
|------------------|-------|-------|-------|--------|--------|-------|--------|
| LAB I.D.         |       | 10486 | 10489 | 10490  | 10491  | 10492 | 10493  |
| DEPTH (m)        | •     | -     | -     | -      | -      | -     | -      |
| MOISTURE (% w/w) | 1 -   | -     | -     | -      | -      | -     | -      |
| TPH C6-C36 as C8 | -     | nd    | nd    | 0.09 * | nd     | nd    | nd     |
| C6-C9            | 10    | nd    | nd    | 0.09 * | nd     | nd    | nd     |
| C10-C14          | 20    | nd    | nd    | nd     | nd     | nd    | nd     |
| C15-C28          | 100   | nd    | nd    | nd     | nd     | nd    | nd     |
| C29-C36          | 100   | nd    | nd    | nd     | nd     | nd    | nd     |
|                  |       |       |       |        |        |       |        |
|                  |       |       |       |        |        |       |        |

\* Single Peak

(S) Soils:

PQL = Practical Quantitation Limit

mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm) (O) Oils: mg/kg (ppm) nd = Less than PQL - = Not Applicable

Reported values may be lower than the stated TPH PQL's if individual hydrocarbons are detected. PQL's for individual hydrocarbons are 1 ppm for soils and 0.01 ppm for water.





### TOTAL PETROLEUM HYDROCARBONS/BTEX (TPH/BTEX)

DowElanco (NZ) Ltd.

CONFIDENTIAL

CLIENT: GROUNDWATER TECHNOLOGY- NEW ZEALAND REPORT No: 5S02034

SAMPLES: 11 x WATERS PAGE: 5 OF 15

| SAMPLE I.D.      | PQL<br>- | BH 34 | BH 37 | BH 28 | BH 36 | BH28B | Contro |
|------------------|----------|-------|-------|-------|-------|-------|--------|
| LAB I.D.         | :-       | 10494 | 10495 | 10498 | 10499 | 10500 | СВ     |
| DEPTH (m)        | -        | -     | -     | -     | -     | -     | -      |
| MOISTURE (% w/w) | -        | -     | -     |       | -     | -     | -      |
| TPH C6-C36 as C8 |          | nd    | nd    | nd    | nd    | nd    | nd     |
| C6-C9            | 0.02     | nd    | nd    | nd    | nd    | nd    | nd     |
| C10-C14          | 0.04     | nd    | nd    | nd    | nd    | nd    | nd     |
| C15-C28          | 0.2      | nd    | nd    | nd    | nd    | nd    | nd     |
| C29-C36          | 0.2      | nd    | nd    | nd    | nd    | nd    | nd     |
|                  |          |       |       |       |       |       |        |
|                  |          |       |       |       |       |       |        |
|                  |          |       |       |       |       |       |        |

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm) (O) Oils: mg/kg (ppm)

Reported values may be lower than the stated TPH PQL's if individual hydrocarbons are detected. PQL's for individual hydrocarbons are 1 ppm for soils and 0.01 ppm for water.



DowElanco (N Z) Ltd. CONFIDENTIAL

CLIENT:

GROUNDWATER TECHNOLOGY NEW ZEALAND REPORT No:

5S02034

SAMPLES:

15 x WATERS, N1034

PAGE:

6 OF 15

| -   | 10486 | 10487 | 10488 |       |       | 1     |
|-----|-------|-------|-------|-------|-------|-------|
|     |       |       | 10400 | 10489 | 10490 | 10491 |
| 0.2 | nd    | nd    | nd    | nd    | nd    | nd    |
| 0.4 | nd    | nd    | nd    | nd    | nd    | nd    |
| 0.4 | nd    | nd    | nd    | nd    | nd    | nd    |
|     |       |       |       |       |       |       |
|     |       |       |       |       |       |       |
|     |       |       |       |       |       |       |
|     |       |       |       |       |       |       |
|     |       |       |       |       |       |       |
|     |       |       |       |       |       |       |
|     |       |       |       |       |       |       |
|     |       |       |       |       |       |       |

PQL = Practical Quantitation Limit

nd = Less than PQL

= Not Applicable

(S) Soils:

mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm)

(O) Oils:

mg/kg (ppm)



DowElanco (NZ) Ltd.
CONFIDENTIAL
5S02034

CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No:

SAMPLES: 15 x WATERS, N1034 PAGE: 7 OF 15

|             | PQL |       |        |       |       | TRIP  | FIELD |
|-------------|-----|-------|--------|-------|-------|-------|-------|
| SAMPLE I.D. |     | BH 33 | BH 33S | BH 34 | BH 37 | В     | В     |
| LAB I.D.    | -   | 10492 | 10493  | 10494 | 10495 | 10496 | 10497 |
| METHANE     | 0.2 | nd    | nd     | nd    | nd    | nd    | nd    |
| ETHANE      | 0.4 | nd    | nd     | nd    | nd    | nd    | nd    |
| ETHENE      | 0.4 | nd    | nd     | nd    | nd    | nd    | nd    |
|             |     |       |        |       |       |       |       |
|             |     |       |        |       |       |       |       |
|             |     |       |        |       |       |       |       |
|             |     |       |        |       |       |       |       |
|             |     |       |        |       |       |       |       |
|             |     |       |        |       |       |       |       |
|             |     |       |        |       |       |       |       |
|             |     |       |        |       |       |       |       |

B2

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm) (O) Oils: mg/kg (ppm)



CLIENT:

GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No:

5S02034

DowElanco (NZ) Ltd.

SAMPLES:

15 x WATERS, N1034

PAGE:

8 OF 1 CONFIDENTIAL

| SAMPLE I.D. | PQL - | BH 28 | BH 36 | BH 28B |  |  |
|-------------|-------|-------|-------|--------|--|--|
| LAB I.D.    | -     | 10498 | 10499 | 10500  |  |  |
| METHANE     | 0.2   | nd    | nd    | nd     |  |  |
| ETHANE      | 0.4   | nd    | nd    | nd     |  |  |
| ETHENE      | 0.4   | nd    | nd    | nd     |  |  |
|             |       |       |       |        |  |  |
|             |       |       |       |        |  |  |
|             |       |       |       |        |  |  |
|             |       |       |       |        |  |  |
|             |       |       |       |        |  |  |
|             |       |       |       |        |  |  |
|             |       |       |       |        |  |  |

PQL = Practical Quantitation Limit

= Less than PQL = Not Applicable

(S) Soils:

mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm)

(O) Oils:

mg/kg (ppm)





#### VOLATILE HALOGENATED COMPOUNDS (VHC)

CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No: 5S02034

SAMPLES: 15 x WATERS, N1034 PAGE: 9 OF 15 DowElanco (NZ) Ltd.

CONFIDENTIAL

| SAMPLE I.D.                | PQL<br>- | BH 15 | TRIP  | FIELD | BH 40 | BH 39 | BH 39E |
|----------------------------|----------|-------|-------|-------|-------|-------|--------|
| LAB I.D.                   | -        | 10486 | 10487 | 10488 | 10489 | 10490 | 10491  |
| VINYL CHLORIDE             | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| CHLOROETHANE               | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| TRICHLOROFLUOROMETHANE     | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| 1,1-DICHLOROETHYLENE       | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| METHYLENE CHLORIDE         | 0.001    | 0.005 | 0.007 | 0.004 | 0.005 | 0.029 | 0.010  |
| trans-1,2-DICHLOROETHYLENE | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| 1,1-DICHLOROETHANE         | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| cis-1,2-DICHLOROETHYLENE   | 0.001    | nd    | nd    | nd    | nd    | 0.004 | nd     |
| CHLOROFORM                 | 0.001    | nd    | 0.003 | 0.004 | 0.002 | 0.018 | 0.003  |
| 1,1,1-TRICHLOROETHANE      | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| CARBON TETRACHLORIDE       | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| 1,2-DICHLOROETHANE         | 0.001    | nd    | nd    | nd    | nd    | 0.080 | nd     |
| TRICHLOROETHYLENE          | 0.001    | 0.001 | nd    | nd    | 0.001 | 0.011 | nd     |
| 1,2-DICHLOROPROPANE        | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| BROMODICHLOROMETHANE       | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| Trans-1,3-DICHLOROPROPENE  | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| cis-1,3-DICHLOROPROPENE    | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| 1,1,2-TRICHLOROETHANE      | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| TETRACHLOROETHYLENE        | 0.001    | nd    | nd    | nd    | 0.001 | 0.001 | nd     |
| DIBROMOCHLOROMETHANE       | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| CHLOROBENZENE              | 0.001    | nd    | nd    | nd    | nd    | 0.036 | nd     |
| BROMOFORM                  | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| 1,1,2,2-TETRACHLOROETHANE  | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| 1,3-DICHLOROBENZENE (m)    | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| 1,4-DICHLOROBENZENE (p)    | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |
| 1,2-DICHLOROBENZENE (o)    | 0.001    | nd    | nd    | nd    | nd    | nd    | nd     |

PQL = Practical Quantitation Limit

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm) (O) Oils: mg/kg (ppm) nd = Not Detected
- = Not Applicable





#### VOLATILE HALOGENATED COMPOUNDS (VHC)

CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND

REPORT No: 5S02034

SAMPLES: 15 x WATERS, N1034

DowElanco (NZ) Ltd.

PAGE: 10 OF 15

| SAMPLE I.D.                | PQL<br>- | BH 33 | BH 33S | BH 34 | BH 37 | TRIP B | FIELD E |
|----------------------------|----------|-------|--------|-------|-------|--------|---------|
| LAB I.D.                   | -        | 10492 | 10493  | 10494 | 10495 | 10496  | 10497   |
| VINYL CHLORIDE             | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| CHLOROETHANE               | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| TRICHLOROFLUOROMETHANE     | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| 1,1-DICHLOROETHYLENE       | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| METHYLENE CHLORIDE         | 0.001    | 0.004 | 0.006  | 0.008 | nd    | 0.008  | 0.012   |
| trans-1,2-DICHLOROETHYLENE | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| 1,1-DICHLOROETHANE         | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| cis-1,2-DICHLOROETHYLENE   | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| CHLOROFORM                 | 0.001    | 0.004 | 0.003  | 0.011 | nd    | 0.004  | 0.002   |
| 1,1,1-TRICHLOROETHANE      | 0.001    | nd    | nd     | 0.002 | nd    | nd     | nd      |
| CARBON TETRACHLORIDE       | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| 1,2-DICHLOROETHANE         | 0.001    | nd    | nd     | 0.002 | nd    | nd     | nd      |
| TRICHLOROETHYLENE          | 0.001    | 0.001 | 0.001  | 0.011 | nd    | nd     | nd      |
| 1,2-DICHLOROPROPANE        | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| BROMODICHLOROMETHANE       | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| Trans-1,3-DICHLOROPROPENE  | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| cis-1,3-DICHLOROPROPENE    | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| 1,1,2-TRICHLOROETHANE      | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| TETRACHLOROETHYLENE        | 0.001    | nd    | nd     | 0.001 | nd    | nd     | nd      |
| DIBROMOCHLOROMETHANE       | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| CHLOROBENZENE              | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| BROMOFORM                  | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| 1,1,2,2-TETRACHLOROETHANE  | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| 1,3-DICHLOROBENZENE (m)    | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| 1,4-DICHLOROBENZENE (p)    | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |
| 1,2-DICHLOROBENZENE (o)    | 0.001    | nd    | nd     | nd    | nd    | nd     | nd      |

PQL = Practical Quantitation Limit

(S) Soils: mg/kg (ppm) dry weight

(W) Waters: mg/l (ppm) (O) Oils: mg/kg (ppm) nd = Not Detected - = Not Applicable





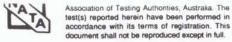
#### VOLATILE HALOGENATED COMPOUNDS (VHC)

CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No: 5S02034

SAMPLES: 15 x WATERS, N1034

DowElanco (NZ) Ltd.

PAGE: 11 OF 15 CONFIDENTIAL


| SAMPLE I.D.                | PQL<br>- | BH 28 | BH 36 | BH 28B | Control<br>Blank | 7 |  |
|----------------------------|----------|-------|-------|--------|------------------|---|--|
| LAB I.D.                   | -        | 10498 | 10499 | 10500  | СВ               |   |  |
|                            |          |       |       |        |                  |   |  |
| VINYL CHLORIDE             | 0.001    | nd    | nd    | nd     | nd               |   |  |
| CHLOROETHANE               | 0.001    | nd    | nd    | nd     | nd               |   |  |
| TRICHLOROFLUOROMETHANE     | 0.001    | nd    | nd    | nd     | nd               |   |  |
| 1,1-DICHLOROETHYLENE       | 0.001    | 0.002 | 0.002 | nd     | nd               |   |  |
| METHYLENE CHLORIDE         | 0.001    | 0.008 | 0.008 | 0.008  | nd               |   |  |
| trans-1,2-DICHLOROETHYLENE | 0.001    | nd    | nd    | nd     | nd               |   |  |
| 1,1-DICHLOROETHANE         | 0.001    | nd    | nd    | nd     | nd               |   |  |
| cis-1,2-DICHLOROETHYLENE   | 0.001    | nd    | nd    | nd     | nd               |   |  |
| CHLOROFORM                 | 0.001    | 0.001 | 0.005 | 0.005  | nd               |   |  |
| 1,1,1-TRICHLOROETHANE      | 0.001    | 0.003 | 0.006 | 0.015  | nd               |   |  |
| CARBON TETRACHLORIDE       | 0.001    | nd    | nd    | nd     | nd               |   |  |
| 1,2-DICHLOROETHANE         | 0.001    | nd    | 0.002 | nd     | nd               |   |  |
| TRICHLOROETHYLENE          | 0.001    | nd    | 0.003 | nd     | nd               |   |  |
| 1,2-DICHLOROPROPANE        | 0.001    | nd    | nd    | nd     | nd               |   |  |
| BROMODICHLOROMETHANE       | 0.001    | nd    | nd    | nd     | nd               |   |  |
| Trans-1,3-DICHLOROPROPENE  | 0.001    | nd    | nd    | nd     | nd               |   |  |
| cis-1,3-DICHLOROPROPENE    | 0.001    | nd    | nd    | nd     | nd               |   |  |
| 1,1,2-TRICHLOROETHANE      | 0.001    | nd    | nd    | nd     | nd               |   |  |
| TETRACHLOROETHYLENE        | 0.001    | nd    | nd    | nd     | nd               |   |  |
| DIBROMOCHLOROMETHANE       | 0.001    | nd    | nd    | 0.001  | nd               |   |  |
| CHLOROBENZENE              | 0.001    | nd    | nd    | nd     | nd               |   |  |
| BROMOFORM                  | 0.001    | nd    | nd    | nd     | nd               |   |  |
| 1,1,2,2-TETRACHLOROETHANE  | 0.001    | nd    | nd    | nd     | nd               |   |  |
| 1,3-DICHLOROBENZENE (m)    | 0.001    | nd    | nd    | nd     | nd               |   |  |
| 1,4-DICHLOROBENZENE (p)    | 0.001    | nd    | nd    | nd     | nd               |   |  |
| 1,2-DICHLOROBENZENE (o)    | 0.001    | nd    | nd    | nd     | nd               |   |  |

PQL = Practical Quantitation Limit

nd = Not Detected - = Not Applicable

(S) Soils: mg/kg (ppm) dry weight (W) Waters: mg/l (ppm)

(O) Oils: mg/kg (ppm)





CLIENT:

**GROUNDWATER TECHNOLOGY - NEW ZEALAND** 

REPORT No:

5S02034

SAMPLES: 9 x WATERS, N1034

PAGE:

12 OF 15 DowElanco (N Z) Ltd.

METHOD REFERENCE: APHA 18th Ed. (Unless otherwise specified)

CONFIDENTIAL

| SAMPLE I.D.            | AAL meth. Ref. | PQL | UNITS | BH15  | Trip  | Field | BH40  | BH39                                   |
|------------------------|----------------|-----|-------|-------|-------|-------|-------|----------------------------------------|
| LAB I.D.               | -              |     |       | 10486 | 10487 | 10488 | 10489 | 10490                                  |
| BOD (5)                | W026           | 5   | mg/L  | nd    | •     | •     | nd    | nd                                     |
| BOD (20) *             | W026           | 5   | mg/L  | 7     | -     |       | 26    | 103                                    |
| рН                     | W031           | 5   | -     | 6.8   | -     | -     | 6.7   | 6.4                                    |
| CONDUCTIVITY           | W032           | -   | uS/cm | 530   | -     | -     | 564   | 480                                    |
| TOTAL DISSOLVED SOLIDS | W033           | 2   | mg/L  | 258   |       |       | 277   | 308                                    |
| CHEMICAL OXYGEN DEMAND | W038.1         | 2   | mg/L  | nd    | -     | -     | nd    | 28                                     |
| TOTAL ORGANIC CARBON   | W048 **        | 25  | mg/L  | 2     | _     | -     | 2     | 2                                      |
|                        |                |     |       |       |       |       |       |                                        |
|                        |                |     |       |       |       |       |       |                                        |
|                        |                |     |       |       |       |       |       |                                        |
|                        |                |     |       |       |       |       |       |                                        |
|                        |                |     |       |       |       |       |       |                                        |
|                        |                |     |       |       |       |       |       |                                        |
|                        |                |     |       |       |       |       |       |                                        |
|                        |                |     |       |       |       |       |       | 20050000000000000000000000000000000000 |
|                        |                |     |       |       |       |       |       |                                        |
|                        |                |     |       |       |       |       |       |                                        |

\* BOD (20) is not a registered Nata Test.

PQL = Practical Quantitation Limit

= Less than PQL

\*\* = USEPA 9060 (Mod.)

= Not Applicable





CLIENT:

GROUNDWATER TECHNOLOGY - NEW ZEALAND

REPORT No: 5S02034

SAMPLES: 9 x WATERS, N1034

PAGE:

13 OF 15 DowElanco (NZ) Ltd.

METHOD REFERENCE: APHA 18th Ed. (Unless otherwise specified)

CONFIDENTIAL

| BOD (5)                                                                                                                                                                                                                                                                                                                                                                                                                                | ВН37  | BH34  | BH33S | BH33  | внз9в | UNITS<br>- | PQL<br>- | AAL<br>meth. Ref. | SAMPLE I.D.            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|------------|----------|-------------------|------------------------|
| BOD (20) * W026 5 mg/L 6 6 21 51  pH W031 6.5 6.2 6.2 6.4  CONDUCTIVITY W032 2 uS/cm 4 420 385 678  TOTAL DISSOLVED SOLIDS W033 2 mg/L nd 270 247 316  CHEMICAL OXYGEN DEMAND W038.1 25 mg/L nd 170 75 nd                                                                                                                                                                                                                              | 10495 | 10494 | 10493 | 10492 | 10491 |            | -        | -                 | LAB I.D.               |
| pH         W031         -         -         6.5         6.2         6.2         6.4           CONDUCTIVITY         W032         2         uS/cm         4         420         385         678           TOTAL DISSOLVED SOLIDS         W033         2         mg/L         nd         270         247         316           CHEMICAL OXYGEN DEMAND         W038.1         25         mg/L         nd         170         75         nd | nd    | 15    | nd    | nd    | nd    | mg/L       | 5        | W026              | BOD (5)                |
| CONDUCTIVITY         W032         2         uS/cm         4         420         385         678           TOTAL DISSOLVED SOLIDS         W033         2         mg/L         nd         270         247         316           CHEMICAL OXYGEN DEMAND         W038.1         25         mg/L         nd         170         75         nd                                                                                               | 16    | 51    | 21    | 6     | 6     | mg/L       | 5        | W026              | BOD (20) *             |
| TOTAL DISSOLVED SOLIDS         W033         2         mg/L         nd         270         247         316           CHEMICAL OXYGEN DEMAND         W038.1         25         mg/L         nd         170         75         nd                                                                                                                                                                                                         | 5.8   | 6.4   | 6.2   | 6.2   | 6.5   |            | -        | W031              | рН                     |
| CHEMICAL OXYGEN DEMAND W038.1 25 mg/L nd 170 75 nd                                                                                                                                                                                                                                                                                                                                                                                     | 423   | 678   | 385   | 420   | 4     | uS/cm      | 2        | W032              | CONDUCTIVITY           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | 263   | 316   | 247   | 270   | nd    | mg/L       | 2        | W033              | TOTAL DISSOLVED SOLIDS |
| TOTAL ORGANIC CARBON W048 ** 1 mg/L nd 6 4 14                                                                                                                                                                                                                                                                                                                                                                                          | nd    | nd    | 75    | 170   | nd    | mg/L       | 25       | W038.1            | CHEMICAL OXYGEN DEMAND |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        | nd    | 14    | 4     | 6     | nd    | mg/L       | 1        | W048 **           | TOTAL ORGANIC CARBON   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |       |       |       |            |          |                   |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |       |       |       |            |          |                   |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |       |       |       |            |          |                   | -                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |       |       |       |            |          |                   |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |       |       |       |            |          |                   |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |       |       |       |            |          |                   |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |       |       |       |            |          |                   |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |       |       |       |            |          |                   |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |       |       |       |            |          |                   |                        |

B2

PQL = Practical Quantitation Limit

nd = Less than PQL = Not Applicable

\*\* = USEPA 9060 (Mod.)

<sup>\*</sup> BOD (20) is not a registered Nata test.





CLIENT:

GROUNDWATER TECHNOLOGY - NEW ZEALAND

REPORT No:

5S02034

SAMPLES: 9 x WATERS, N1034

PAGE:

14 OF 15

DowElanco (NZ) Ltd.

METHOD REFERENCE: APHA 18th Ed. (Unless otherwise specified)

CONFIDENTIAL

| SAMPLE I.D.            | AAL meth. Ref. | PQL<br>- | UNITS | TRIP B | FIELD B | BH28  | BH36  | BH28B |
|------------------------|----------------|----------|-------|--------|---------|-------|-------|-------|
| LAB I.D.               | -              | -        |       | 10496  | 10497   | 10498 | 10499 | 10500 |
| BOD (5)                | W026           | 5        | mg/L  |        | -       | nd    | nd    | nd    |
| BOD (20) *             | W026           | 5        | mg/L  |        |         | 10    | nd    | nd    |
| pH                     | W031           | -        | -     | -      | -       | 6.4   | 6.4   | 6.2   |
| CONDUCTIVITY           | W032           | 2        | uS/cm | -      | -       | 552   | 602   | 3     |
| TOTAL DISSOLVED SOLIDS | W033           | 2        | mg/L  |        | -       | 240   | 324   | nd    |
| CHEMICAL OXYGEN DEMAND | W038.1         | 25       | mg/L  | -      | -       | nd    | nd    | nd    |
| TOTAL ORGANIC CARBON   | W048 **        | 1        | mg/L  |        |         | nd    | 3     | nd    |
|                        |                |          |       |        |         |       |       |       |
| skrighter 1986         | A TOTAL        |          |       |        |         |       |       |       |
|                        |                |          |       |        |         |       |       |       |
|                        |                |          |       |        |         |       |       |       |
|                        |                |          |       |        |         |       |       |       |
|                        |                |          |       |        |         |       |       |       |
|                        |                |          |       |        |         |       |       |       |
|                        |                |          |       |        |         |       |       |       |

\* BOD (20) is not a registered Nata Test.

PQL = Practical Quantitation Limit

nd = Less than PQL

\*\* = USEPA 9060 (Mod.)

= Not Applicable





CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No: 5S02034

SAMPLES: WATERS PAGE: 15 OF 15

METHOD REFERENCE: APHA 18th Ed. (Unless otherwise specified)

DowElanco (N Z) Ltd.

CONFIDENTIAL

|                        | AAL        | PQL | UNITS           | Control |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|------------------------|------------|-----|-----------------|---------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| SAMPLE I.D.            | meth. Ref. | -   | 1 -2            | Blank   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| LAB I.D.               | -          | -   |                 | СВ      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| BOD (5)                | W026       | 5   | mg/L            | nd      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| BOD (20) *             | W026       | 5   | mg/L            | nd      |  | 12 130 3W 100 100 VIII 100 VII |           |
| pH                     | W031       | -   | -               |         |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| CONDUCTIVITY           | W032       | 2   | uS/cm           | nd      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| TOTAL DISSOLVED SOLIDS | W033       | 2   | mg/L            | nd      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| CHEMICAL OXYGEN DEMAND | W038.1     | 25  | mg/L            | nd      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| TOTAL ORGANIC CARBON   | W048 **    | 1   | mg/L            | nd      |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                        |            |     |                 |         |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                        |            |     |                 |         |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                        |            |     |                 |         |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                        | 163 KH     |     | o culturare car |         |  | n delection of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
|                        |            |     |                 |         |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                        |            |     |                 |         |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000000 |
|                        |            |     |                 |         |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                        |            |     |                 |         |  | era i mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
|                        |            |     |                 |         |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|                        |            |     |                 |         |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |

<sup>\*</sup> BOD (20) is not a registered Nata Test

PQL = Practical Quantitation Limit

\*\* = USEPA 9060 (Mod.)

nd = Less than PQL - = Not Applicable B2



DowElanco (NZ) Ltd. CONFIDENTIAL

#### QA/QC APPENDIX No. 5S02034

| ANALYTE                         | No. of Pages. |
|---------------------------------|---------------|
| Organochlorine Pesticides/PCB's | 3             |
| Total Petroleum Hydrocarbons    | 2             |
| GC/MS Volatiles                 | 2             |
| Volatile Halogenated Carbons    | 4             |
| Nutrients                       | 2             |
| TOTAL No. of PAGES              | 13            |
|                                 |               |

Other Criteria: (except Inorganics/Nutrients)

Retention Time Window Check Standard Recalibration

Within Acceptance Criteria Within Acceptance Criteria Within 15%

Signed:

R.G. MOONEY B.Sc.(Hons), Dip.F.D.A., M.R.A.C.I.

**Authorising Chemist** 



LABORATORY DUPLICATE - QA/QC REPORT CLIENT:

GROUNDWATER- NEW ZEALAND

REPORT No:

5S02054

SAMPLES: 15 x WATERS, N1034

PAGE: 1 OF 2 DowElanco (N Z) Ltd.

CONFIDENTIAL

| SAMPLE I.D. | UNITS | PQL | TRIP B | TRIP B Duplicate | Average      | RPD % | Comments  |
|-------------|-------|-----|--------|------------------|--------------|-------|-----------|
| LAB I.D.    | -     |     | 10496  | 10496            |              |       |           |
| METHANE     | mg/L  | 0.2 | nd     | nd               | nd           | -     |           |
| ETHANE      | mg/L  | 0.4 | nd     | nd               | nd           | -     |           |
| ETHENE      | mg/L  | 0.4 | nd     | nd               | nd           | -     |           |
|             |       |     |        |                  |              |       |           |
|             |       |     |        |                  |              |       |           |
|             |       |     |        |                  |              |       |           |
|             |       |     |        |                  | endall meda. |       |           |
|             |       |     |        |                  |              |       |           |
|             |       |     |        |                  |              |       |           |
|             |       |     |        |                  |              |       |           |
|             |       |     |        |                  |              |       | MALE SAME |
|             |       |     |        |                  |              |       |           |
|             |       |     |        |                  |              |       |           |

PQL = Practical Quantitation Limit

nd = Less than PQL

- = Not Applicable

RPD = Relative Percent Difference

QA/QC data within acceptance criteria



CLIENT:

**GROUNDWATER TECHNOLOGY** 

REPORT No:

5S02034

SAMPLES: 15 x WATERS, N1034

PAGE:

2 OF 2 DowElanco (N Z) Ltd.

CONFIDENTIAL

| SAMPLE I.D.<br>LAB I.D. | UNITS - | PQL | BH 28<br>10498 | BH 28<br>Duplicate<br>10498 | Average | RPD % | Comments |
|-------------------------|---------|-----|----------------|-----------------------------|---------|-------|----------|
| LAB I.D.                | -       |     | 10490          | 10490                       |         |       |          |
| METHANE                 | mg/L    | 0.2 | nd             | nd                          | nd      | •     |          |
| ETHANE                  | mg/L    | 0.4 | nd             | nd                          | nd      | -     |          |
| ETHENE                  | mg/L    | 0.4 | nd             | nd                          | nd      | -     |          |
|                         |         |     |                |                             |         |       |          |
|                         |         |     | 1.5            |                             |         |       |          |
|                         |         |     |                |                             |         |       |          |
|                         |         |     | 0.19           |                             |         |       |          |
| •                       |         |     |                |                             |         |       |          |
|                         |         |     |                |                             |         |       |          |
|                         |         |     |                |                             |         |       |          |
|                         |         |     |                |                             |         |       |          |
|                         |         |     |                |                             |         |       |          |
|                         |         |     |                |                             |         |       |          |

PQL = Practical Quantitation Limit

= Less than PQL = Not Applicable

RPD = Relative Percent Difference

QA/QC data within acceptance criteria



CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND REPORT No: 5S02034

SAMPLES: 15 x WATERS, N1034

PAGE: 1 OF 2

DowElanco (NZ) Ltd.

CONFIDENTIAL

| SAMPLE I.D.            | UNITS | PQL | 33    | Duplicate | Average | RPD % | Comments |
|------------------------|-------|-----|-------|-----------|---------|-------|----------|
| LAB I.D.               | -     |     | 10492 | 10492     |         |       |          |
| CHEMICAL OXYGEN DEMAND | mg/L  | 25  | 160   | 180       | 170     | 12    |          |
| BOD (5)                | mg/L  | 5   | nd    | nd        | nd      | -     |          |
| рН                     | -     | -   | 6.2   | 6.2       | 6.2     | 0     | 10000    |
| CONDUCTIVITY           | uS/cm | 2   | 421   | 420       | 420.5   | <1    |          |
| TOTAL DISSOLVED SOLIDS | mg/L  | 5   | 170   | 269       | 269.5   | <1    |          |
| BOD (20)               | mg/L  | 5   | 6     | 7         | 6.5     | 15    |          |
|                        |       |     |       |           |         |       |          |
|                        |       |     |       |           |         |       |          |
|                        |       |     |       |           |         |       |          |
|                        |       |     |       |           |         |       |          |
|                        |       |     |       |           |         |       |          |

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

RPD = Relative Percent Difference

QA/QC data within acceptance criteria



MATRIX SPIKE/CHECK SOLUTIONS - QA/QC REPORT CLIENT: GROUNDWATER TECHNOLOGY - NEW ZEALAND

REPORT No:

5S02034

SAMPLES: 15 x WATERS, N1034

PAGE:

<sup>2</sup> DF 2 DowElanco (N Z) Ltd.

CONFIDENTIAL

| ANALYTE                | UNITS | PQL<br>- | Matrix Spike/<br>Check<br>Solution | Results | Acceptance<br>Limits | Comments |
|------------------------|-------|----------|------------------------------------|---------|----------------------|----------|
|                        |       |          | 100                                | 405     | . 400                |          |
| TOTAL ORGANIC CARBON   | mg/L  | 1        | 100                                | 105     | ± 10%                |          |
| BOD (5)                | mg/L  | 5        | 200                                | 240     | ± 20%                |          |
| рН                     | -     | -        | 7.4                                | 7.5     | <u>+</u> 0.2         |          |
| CONDUCTIVITY           | uS/cm | 2        | 303                                | 305     | <u>+</u> 10%         |          |
| TOTAL DISSOLVED SOLIDS | mg/L  | 5        | 293                                | 273     | <u>+</u> 10%         |          |
|                        |       |          |                                    |         |                      |          |
|                        |       |          |                                    |         |                      |          |
|                        |       |          |                                    |         |                      | 3.5 MA   |

PQL = Practical Quantitation Limit

nd = Less than PQL - = Not Applicable

QA/QC data within acceptable criteria

Circulation: C.Nolan.

Analytical Request Number: 6587

# PHENOXIES/CHLOROPHENOLS in BORE WATER SAMPLES

Date Raised: 09 April 1996 Date Completed: 15 April 1996

## Details of Request:

Please analyse samples of Bore Water, as taken by Groundwater Technology, for Phenoxy Acids and Phenois.

Scientist: C.Collins

Author: C.Collins

A. SUMMARY

#### **B. EXPERIMENTAL**

Std Method PHN-ENV-91-1

#### C. RESULTS

| Recovery ex BH32 | 2,4-D | MCPA  | PCOC  | 2,4-DCP | 2,4,5-T | 2,4,6-TCP | 2,4,5-TCP | МСРВ |
|------------------|-------|-------|-------|---------|---------|-----------|-----------|------|
|                  | µg/L  | µg/L  | μg/L  | μg/L    | μg/L    | μg/L      | ug/L      | μg/L |
| Amount added     | 30.24 | 31.17 | 30.42 | 31.41   | 30.21   | 31.2      | 32.13     | 31.2 |
| Amount found     | 30.56 | 30.21 | 33.42 | 31.87   | 28.28   | 31.74     | 30.6      | 36.4 |
| Rec %            | 101   | 96.9  | 110   | 102     | 93.6    | 102       | 95.2      | 117  |

| Recovery ex BH32 | 2,4-D | MCPA  | PCOC  | 2,4-DCP | 2,4,5-T | 2,4,6-TCP | 2,4,5-TCP | МСРВ  |
|------------------|-------|-------|-------|---------|---------|-----------|-----------|-------|
|                  | µg/L  | μg/L  | μg/L  | μg/L    | μg/L    | μg/L      | ug/L      | μg/L  |
| Amount added     | 100.8 | 103.9 | 101.4 | 104.7   | 100.7   | 104       | 107.1     | 104   |
| Amount found     | 100.9 | 103.4 | 102.9 | 108.7   | 99.23   | 105.4     | 103.7     | 109.9 |
| Rec %            | 100   | 99.5  | 102   | 104     | 98,5    | 101       | 96.8      | 106   |

| Recovery ex BH32 | 2,4-D | MCPA | PCOC | 2,4-DCP | 2,4,5-T | 2,4,6-TCP | 2,4,5-TCP | МСРВ |
|------------------|-------|------|------|---------|---------|-----------|-----------|------|
|                  | µg/L  | μg/L | μg/L | μg/L    | μg/L    | μg/L      | ug/L      | μg/L |
| Amount added     | 1008  | 1039 | 1014 | 1047    | 1007    | 1040      | 1071      | 1040 |
| Amount found     | 1049  | 1070 | 1053 | 1114    | 1043    | 1139      | 1085      | 1104 |
| Rec %            | 104   | 103  | 104  | 106     | 104     | 110       | 101       | 106  |

-2-

| Sample ID | 2,4-D       | MCPA | PCOC | 2,4-DCP | 2,4,5-T | 2,4,6-TCP | 2,4,5-TCP | MCPB |
|-----------|-------------|------|------|---------|---------|-----------|-----------|------|
|           | μg/L        | μg/L | μg/L | μg/L    | μg/L    | μg/L      | ug/L      | μg/L |
| Trip A    | ND          | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| MW22      | ND          | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| MW3       | ND          | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| MW6       | ND          | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| Fleld A   | ND          | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| MW34      | 83.0        | ND   | 3.6  | ND      | ND      | ND        | ND        | ND   |
| MW28      | ND          | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| MW15B     | ND          | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| BH20      | ND          | ND   | 17.1 | ND      | ND      | ND        | ND        | ND   |
| BH40      | ND          | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| MW42*     | 164         | 54.9 | 5.7  | 25.8    | 1630    | 11.2      | 409       | ND   |
| MW41      | 6.9         | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| Field B   | ND          | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| MW15S     | 6.3         | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| MW15      | 6.5         | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| MW39B     | ND          | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| MW33      | 3.8         | ND   | ND   | 3.8     | - ND    | ND        | ND        | ND   |
| MW36      | ND          | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| MW39      | ND          | ND   | ND   | 7.2     | ND      | ND        | ND        | ND   |
| Trip B    | ND          | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| BH32      | ND          | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| MW39K     | 661 871 229 |      | 42.8 | 1035    | 26.4    | ND        | 174       |      |
| MW39J     | 3527        | 1437 | 1100 | 221     | 9507    | 93.0      | 110       | 61.0 |
| 39JS      | 3480        | 1421 | 1087 | 190     | 9418    | ND        | 83.3      | 58.8 |
| MW37      | ND          | ND   | ND   | ND      | ND      | ND        | ND        | ND   |

 $ND = < 30 \mu g/L$ 

\* Note Sample MW42 was found to be subject to analyte reduction over the period of the analysis. The result quoted is the maximum found but the levels of 2,4,5-T and 2,4,5-TCP reduced to non detectable levels after approx 5 days.

# C. REFERENCES

CC-27-32-33

C.Collins

Circulation: C.Nolan.

Analytical Request Number: 6704

DowElanco (NZ) Ltd. CONFIDENTIAL

# PHENOXIES/CHLOROPHENOLS IN BORE WATER SAMPLES

Date Raised: 03-May-1996 Date Completed: 15-May-1996

Details of Request:

Please analyse samples of Bore Water and soil, as taken by Groundwater Technology, for Phenoxy Acids and Phenols.

Scientist: C.Collins

Author: C.Collins

A. SUMMARY

B. EXPERIMENTAL

Std Method PHN-ENV-91-1

C. RESULTS

| Sample ID        | When<br>Analysed | 2,4-D | МСРА | PCOC | 2,4-DCP | 2,4,5-T | 2,4,6-TCP | 2,4,5-TCP | МСРВ |
|------------------|------------------|-------|------|------|---------|---------|-----------|-----------|------|
|                  |                  | μg/L  | ид/L | μg/L | μg/L    | μg/L    | µg/L      | ug/L      | μg/L |
| BH42 1130 030596 | 030596<br>1235   | 650   | 166  | ND   | ND      | 2071    | ND        | 265       | ND   |
| BH42 1130 030596 | 060596<br>1010   | 638   | 160  | ND   | ND      | 2048    | ND        | 207       | ND   |

| Sample ID         | When<br>Analysed | 2,4-D | MCPA | PCOC | 2,4-DCP | 2,4,5-T | 2,4,6-TCP | 2,4,5-TCP | МСРВ |
|-------------------|------------------|-------|------|------|---------|---------|-----------|-----------|------|
|                   |                  | µg/L  | μg/L | µg/L | дд∕∟    | µg/L    | µg/L      | ug/L      | μg/L |
| BH42S 1130 030596 | 030596<br>1327   | 737   | 183  | 31   | 30      | 2334    | ND        | 385       | ND   |

| Sample ID        | When<br>Analysed | 2,4-D | MCPA | PCOC | 2,4-DCP | 2,4,5-T | 2,4,6-TCP | 2,4,5-TCP | MCPE |
|------------------|------------------|-------|------|------|---------|---------|-----------|-----------|------|
|                  |                  | µg/L  | μg/L | µg/L | µg/L    | μg/L    | μg/L      | ug/L      | μg/L |
| BH42 1645 030596 | 030596<br>1957   | 1565  | 387  | ND   | ND      | 4557    | ND        | 1434      | ND   |
| BH42 1645 030596 | 060596<br>1101   | 1602  | 383  | ND   | ND      | 4888    | ND        | 1526      | ND   |

DowElanco (NZ) Ltd.

|                      |                  |       |      |      |         | (       | CONFID    | ENTIAL    |      |
|----------------------|------------------|-------|------|------|---------|---------|-----------|-----------|------|
| Sample ID            | When<br>Analysed | 2,4-D | MCPA | PCOC | 2,4-DCP | 2,4,5-T | 2,4,6-TCP | 2,4,5-TCP | MCPE |
| 1000                 |                  | μg/L  | µg/L | µg/L | μg/L    | μg/L    | µg/L      | ug/L      | μg/L |
| BH41 030596          | 030596<br>1427   | ND    | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| FIELD A 030596       | 030596<br>1815   | ND    | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| RINSEATE A<br>030596 | 030596<br>1906   | ND    | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| BH 19 030596         | 060596<br>1152   | ND    | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| BH 20 030596         | 060596           | ND    | ND   | ND   | ND      | ND      | ND        | ND        | ND   |

# ND (Water Samples) = < 30μg/L

| Sample ID       | When<br>Analysed | 2,4-D | MCPA | PCOC | 2,4-DCP | 2,4,5-T | 2,4,6-TCP | 2,4,5-TCP | МСРВ |
|-----------------|------------------|-------|------|------|---------|---------|-----------|-----------|------|
| SOIL A1A 030596 | 150596           | ND    | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| SOIL A1B 030596 | 150596           | ND    | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| SOIL A2A 030596 | 150596           | ND    | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| SOIL A2B 030596 | 150596           | ND    | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| SOIL A3 030596  | 150596           | ND    | ND   | ND   | ND      | ND      | ND        | ND        | ND   |
| SOIL A4 030596  | 150596           | ND    | ND   | ND   | ND      | ND      | ND        | ND        | ND   |

ND(Soil Samples) = < 100μg/Kg

C. REFERENCES

CC-27-45,46

C.Collins





35 O'Rorke Rd P.O. Box 12-545 Penrose, Auckland New Zealand Phone (09) 579-2669 FAX (09) 579-0560

30 April 1996

Groundwater Technology NZ Ltd PO Box 8497 Symonds Street AUCKLAND

Attention: David Morton

FINAL REPORT 16/5/96

Dear David

re:

Analysis of

: 25x Water Samples

Received

: 11 April 1996

Laboratory No.

: 6100836

Project No.

: 1981

The water samples received from you were analysed as per your written instructions for pH, conductivity, total dissolved solids, total organic carbon and organo phosphates.

The method references are:

pH: -APHA 18th Edition. Section 4500-H+

Total Dissolved Solids @ 103-105°C: -APHA 18th Edition. Section 2540

Conductivity: -APHA18th Edition. Section 2510.

Organo Phosphates: -USEPA 507 by GC with NPD detection.

Non Purgeable Organic Carbon - Analysed by Shell Todd Oil Services Ltd.

RESULTS

See attached report from Shell Todd Oil Service Ltd for Non Purgeable Organic Carbon

Yours faithfully

-W. GRAYSON & ASSOCIATES LTD

J. Kellett NZCS

Section Leader - Environmental

G. Nicholson NZCS MNZIC

Industrial/Environmental Group

Page 2 of 3 Lab No.: 6100836

CONFIDENTIAL DowElanco (NZ) Ltd.

> SCHEDULEI RESULTS

| VITY TOTAL DISSOLVED C SOLIDS mg/L | 289     | 11        | 247  | 423  | 303  | 990   | 289     | 262  | 265  | 222 | 237 | 300  | 241  | 318  | 222  | 4;13    | 526    | 632   | 402  | 461  | 43;37     | 42      | 34       | 16      |
|------------------------------------|---------|-----------|------|------|------|-------|---------|------|------|-----|-----|------|------|------|------|---------|--------|-------|------|------|-----------|---------|----------|---------|
| CONDUCTIVITY<br>µS/cm @25°C        | 455     | 13.8;10.8 | 351  | 684  | 464  | 836   | 431;387 | 409  | 421  | 319 | 388 | 470  | 308  | 501  | 302  | 6.3;4.4 | 851    | 1015  | 577  | 746  | 20.8;31.2 | 7.6;6.7 | 8.1;17.5 | 1.0;1.1 |
| Hd                                 | 6.9     | 0.9       | 6.1  | 6.7  | 8.9  | 9.9   | 9.9     | 6.5  | 8.9  | 6.5 | 8.9 | 6.7  | 6.5  | 6.5  | 6.4  | 5.6     | 9.9    | 9.9   | 9.9  | 6.4  | 6.1       | 5.3     | 5.9      | 5.6     |
| SAMPLE ID                          | MW 15 S | MW15B     | MW22 | MW34 | MW39 | MW39J | BH20    | BH32 | BH40 | MW3 | MW6 | MW28 | MW33 | MW36 | MW37 | MW39B   | MW39JS | MW39K | MW41 | MW42 | FIELD A   | FIELD B | TRIPB    | TRIP A  |

Limit of detection was 50 µg/L. Recoveries ranged from 60-110% at the detection limit.

35 O'Rorke Road, P.O. Box 12-545, Perrose, Auckland, NZ., Phone (09) 579-2669, FAX (09) 579-0560

DowElanco (NZ) Ltd.

CONFIDENTIAL

Page 3of 3 Lab No.: 6100836

> RESULTS SCHEDULE II

Azinphos HEAL <50 <50 <50 <50 <50 5000 <50 <50 <50 <50 <50 <50 <50 <50 50 <50 200 <50 <50 <50 Malathion Hg/L <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 \$50 50 <50 \$50 <50 <50 <50 50 <50 <50 <50 <50 Acephate T/BH <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 5000 Pirimiphos Methyl HB/L <50 <50 <50 <\$0 <50 <50 250 <50 500 <50 <50 <50 <50 <50 <50 <50 <50 05> <50 <50 <50 Dimethoate MB/L <50 <50 5000 50 <50 \$50 <50 Temephos Hg/L <\$0 <50 \$ <50 \$ <50 <50 <50 <50 SS0 <50 <50 <50 <50 \$50 <50 <50 <50 <50 <50 <50 <50 Dichlorvos µg/L <50 <50 \$ \$0 50 500 \$ 50 <50 <50 <50 <50 30 <50 <50 <50 <50 <50 <50 <50 50 30 <50 Chlorpyrifos HB/L <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 50 <50 200 <50 <50 <50 <50 <50 <50 Chloroferinphos HB/L <50 <50 <50 <50 <50 <50 <50 <50 <50 \$50 8 8 8 8 8 8 <50 <50 <50 <50 <50 <50 <50 50 Diazinon MBY <50 <50 \$ 50 <50 <50 \$ \$0 \$ \$0 <50 <50 \$50 \$50 <50 50 <50 \$50 <50 <50 Sample Identification MW39B MW391S MW39K FIELD A FIELD B TRIPB TRIP A MW15B MW391 **MW42** MW39 BH40 MW3 MW6 MW28 MW36 MW37 MW41 MW22 MW34 MW33 BH20 BH32

Limit of detection was 50 µg/L. Recoveries ranged from 60-110% at the detection limit.

G LABORATURIES

35 O'Rorke Road, P.O. Box 12-545, Pennose, Awelland, NZ., Phone (09) 579-2669, FAX (09) 579-0560



# SHELL TODD OIL SERVICES Ltd **KAPUNI PRODUCTION STATION**

# LABORATORY MISCELLANEOUS REPORT

KAPUNI PRODUCTION STATION LABORATORY, PALMER ROAD, KAPUNI pH: (06) 272 6333

DATE ISSUED:

14.05.1996

REQUESTED BY:

Graysons

RESULTS SENT TO:

Graysons

REPORT ID NUMBER:

M 96 0244

| SAMPLE        | LABID#          | DATE TAKEN | *** NPOC ppmC |  |
|---------------|-----------------|------------|---------------|--|
| Trop B        | 6-2067          | 10/04/96   | <1            |  |
| Field A       | 6-2066          |            | <1            |  |
| BH 32 N1034B  | 6-2086          | 10/04/96   | 2.8           |  |
| Field B       | 6-2080          | 10/04/96   |               |  |
| N1034B BH39JS | 6-2090          | 10/04/96   | 21            |  |
| N1034B MW28   | 6-2091 10/04/96 |            | 2.5           |  |
| MW 22         | 6-2071          | 9/04/96    | 3             |  |
| N1034B MW6    | 6-2075          | 9/04/96    | 2.3           |  |
| N1034 MW34    | 6-2083          | 10/04/96   | 4.8           |  |
| N1034B MW37   | 6-2093          | 10/04/96   | 3.5           |  |
| N1034B MW33   | 6-2074          | 11/04/96   | 2.7           |  |
| N1034B MW39B  | 6-2081          | 11/04/96   | <1            |  |
| N1034B BH40   | 6-2076          | 10/04/96   | 3.7           |  |
| N1034B MW39   | 6-2077          | 11/04/96   | 6.1           |  |
| N1034B MW36   | 6-2079          | 11/04/96   | 1.3           |  |
| N1034 MW15 5  | 6-2089          | 9/04/96    | 3.2           |  |
| N1034B MW41   | 6-2092          | 11/04/96   | 3.9           |  |
| N1034B MW42   | 6-2084          | 10/04/96   | 3.6           |  |
| N1034B BH20   | 6-2085          | 10/04/96   | 5.9           |  |
| N1034 MW15    | 6-2087          | 9/04/96    | 2.4           |  |
| N1034B MW3    | 6-2088          | 9/04/96    | 4.1           |  |
| N1034B MB39K  | 6-2078          | 11/04/96   | 19            |  |
| N1034 MW15B   | 6-2073          | 9/04/96    | <1            |  |
| N1034 Trip A  | 6-2072          | 9/04/96    | <1            |  |
| N1034B BH39J  | 6-2082          | 10/04/96   | 23            |  |

#### NOTES:

- 1.0 All sample labels contained the following information "W.Grayson and Associates Limited Lab No.:1981".
- 2.0 Samples tested as received ,except #6-2082 diluted 1:1 with nanopure water. Analysed at MPS Laboratory on the following dates 16/04, 17/04, 18/04, 19/04, 23/04 and 24/04/96.
- 3.0 Samples received at MPS Laboratory on 16/04/96.
- 4.0 The accuracies and detection limits for these tests are available from the laboratory on request.

CHECKED BY: /ML

APPROVED BY : //

P.Moller (Production Chemist)

APPENDIX F
MODELLING DATA



### ZONBUDEM version 3.0

Program to compute a flow budget for subregions of a model using cell-by-cell flow data from the USGS Modular Ground-Water Plow Model.

The cell-by-cell budget file is: N1034B.CBC

| 1 layers     |        | 24 r | BWO | 28   | col | umns |         |     |    |        |
|--------------|--------|------|-----|------|-----|------|---------|-----|----|--------|
| DOW ELANCO,  | NZ     |      |     |      |     |      |         |     |    |        |
| ■Zone block: | LAYERS | 1-   | 1   | ROWS | 10- | 10   | COLUMNS | 19- | 22 | VALUE: |
| Zone block:  | LAYERS | 1-   | 1   | ROWS | 10- | 13   | COLUMNS | 23- | 23 | VALUE: |
| Zone block:  | LAYERS | 1-   | 1   | ROWS | 14- | 20   | COLUMNS | 23- | 23 | VALUE: |
| Zone block:  | LAYERS |      |     | ROWS | 5-  | 5    | COLUMNS | 7-  | 10 | VALUE: |

Flow Budget for Zone 1 at Time Step 1 of Stress Period 1

| Budget | Term | Flow | (L**3/T) |
|--------|------|------|----------|
|        |      |      |          |

IN:

CONSTANT HEAD = 0.00000 Zone 0 to 1 = 11.090 Zone 2 to 1 = 0.00000

Total IN = 11.090

OUT:

CONSTANT HEAD = 0.00000 Zone 1 to 0 = 8.4723 Zone 1 to 2 = 3.0405

Total OUT = 11.513

IN - OUT = -0.42248

Percent Discrepancy = -3.74

DOW ELANCO, NZ

Flow Budget for Zone 2 at Time Step 1 of Stress Period 1

| Budget | Term | Flow | (L**3/T) |
|--------|------|------|----------|
|        |      |      |          |

IN:

CONSTANT HEAD = 0.00000 Zone 0 to 2 = 7.2440 Zone 1 to 2 = 3.0405 Zone 3 to 2 = 2.2535

Total IN = 12.538

OUT:

CONSTANT HEAD = 0.00000Zone 2 to 0 = 12.960

Zone 2 to 1 = 0.00000Zone 2 to 3 = 0.00000

Total OUT = 12.960

IN - OUT = -0.42247

Percent Discrepancy =

-3.31

1DOW ELANCO, NZ

Flow Budget for Zone 3 at Time Step 1 of Stress Period 1

Budget Term Flow (L\*\*3/T)

IN:

CONSTANT HEAD = 0.00000 Zone 0 to 3 = 12.115Zone 2 to 3 = 0.00000

Total IN = 12.115

OUT:

CONSTANT HEAD = 0.00000 Zone 3 to 0 = 10.599Zone 3 to 2 = 2.2535

> Total OUT = 12.852

IN - OUT = -0.73723

Percent Discrepancy = -5.91

DOW ELANCO, NZ

Flow Budget for Zone 4 at Time Step 1 of Stress Period 1

Budget Term Flow (L\*\*3/T)

IN: . ---

CONSTANT HEAD = 0.00000 Zone 0 to 4 = 9.2866

Total IN = 9.2866

OUT: ----

> CONSTANT HEAD = 0.00000 Zone 4 to 0 = 9.7069

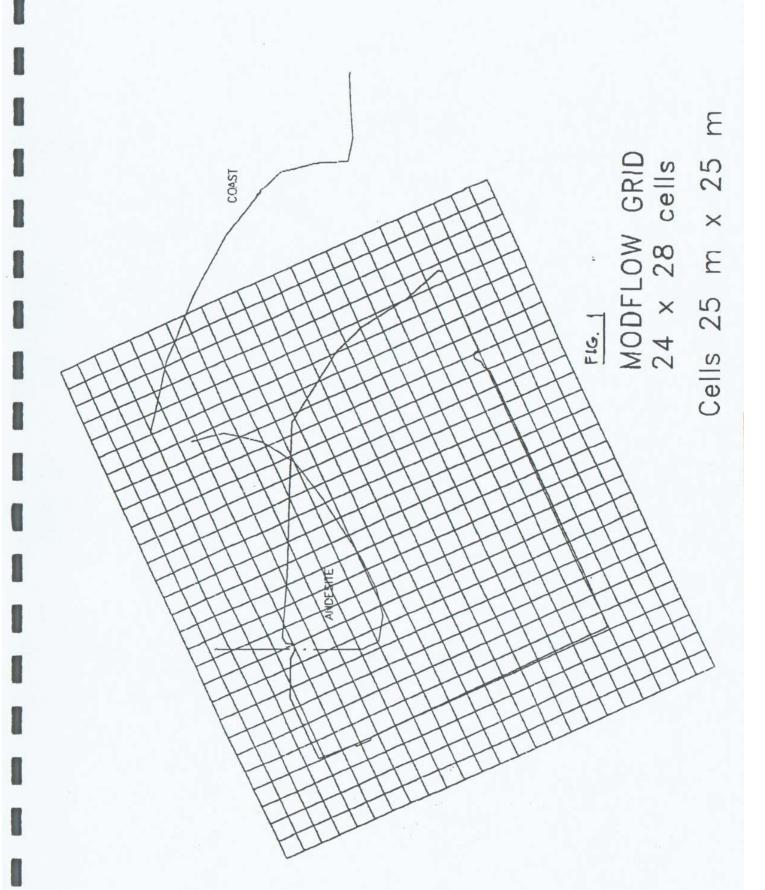
> > Total OUT = 9.7069

IN - OUT = -0.42032

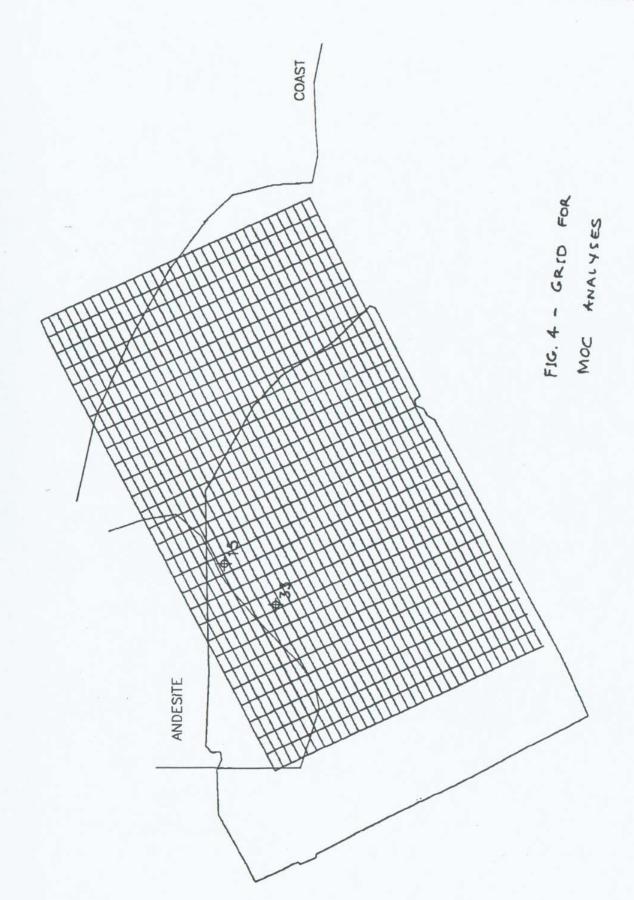
Percent Discrepancy = -4.43 IN:

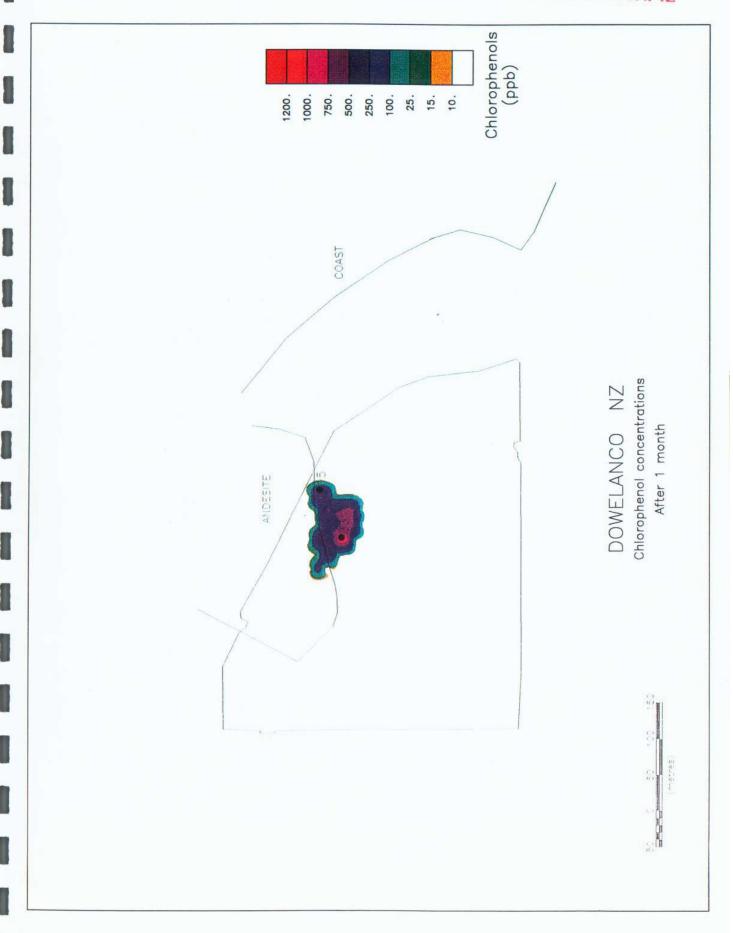
------

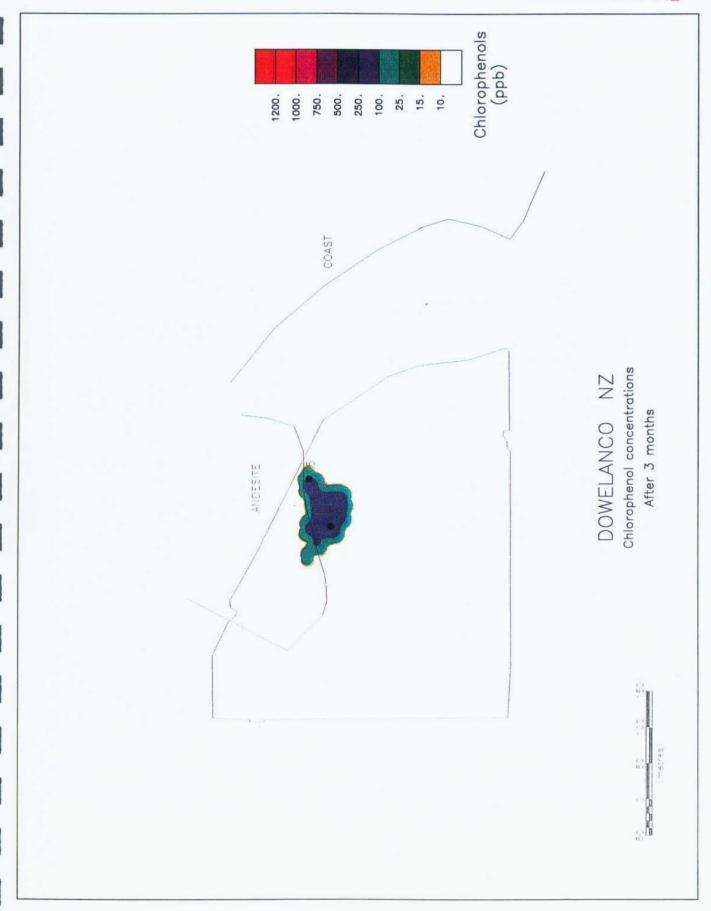
STORAGE = 0.00000 CONSTANT HEAD = 0.00000 WELLS = 5.0000 RECHARGE = 46.581 TOTAL IN = 51.581


OUT:

STORAGE = 0.00000 CONSTANT HEAD = 40.053 WELLS = 11.500 RECHARGE = 0.00000 TOTAL OUT = 51.553


IN - OUT = 0.27622E-01


PERCENT DISCREPANCY = 0.05


FIG 3 MODFLOW WATER BALANCE FOR ENTIRE SITE

